首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turbulence modifications of a dilute gas-particle flow are experimentally investigated in the lower boundary layer of a horizontal channel by means of a simultaneous two-phase PIV measurement technique. The measurements are conducted in the near-wall region with y +?<?250 at Re τ (based on the wall friction velocity u τ and half channel height h)?=?430. High spatial resolution and small interrogation window are used to minimize the PIV measurement uncertainty due to the velocity gradient near the wall. Polythene beads with the diameter of 60?μm (d p + ?=?1.71, normalized by the fluid kinematic viscosity ν and u τ) are used as dispersed phase, and three low mass loading ratios (Φ m ) ranging from 10?4 to 10?3 are tested. It is found that the addition of the particles noticeably modifies the mean velocity and turbulent intensities of the gas-phase, as well as the turbulence coherent structures, even at Φ m ?=?0.025?%. Particle inertia changes the viscous sublayer of the gas turbulence with a smaller thickness and a larger streamwise velocity gradient, which increases the peak value of the streamwise fluctuation velocity ( $ u_{\text{rms}}^{ + } $ ) of the gas-phase with its location shifting to the wall. Particle sedimentation increases the roughness of the bottom wall, which significantly increases the wall-normal fluctuation velocity ( $ v_{\text{rms}}^{ + } $ ) and Reynolds shear stress ( $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ ) of the gas-phase in the inner region of the boundary layer (y +?<?10). Under effect of particle–wall collision, the Q2 events (ejections) of the gas-phase are slightly increased by particles, while the Q4 events (sweeps) are obviously decreased. The spatial scale of the coherent structures near the wall shrinks remarkably with the presence of the particles, which may be attributed to the intensified crossing-trajectory effects due to particle saltation near the bottom wall. Meanwhile, the $ v_{\text{rms}}^{ + } $ and $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ of the gas-phase are significantly reduced in the outer region of the boundary layer (y +?>?20).  相似文献   

2.
Measurements of the spatial and time variation of two components of the velocity have been made over a sinusoidal solid wavy boundary with a height to length ratio of 2a/λ = 0.10 and with a dimensionless wave number of α+ = (2π/λ)(v/u ?) = 0.02. For these conditions, both intermittent and time-mean flow reversals are observed near the troughs of the waves. Statistical quantities that are determined are the mean streamwise and normal velocities, the root-meansquare of the fluctuations of the streamwise and normal velocities, and the Reynolds shear stresses. Turbulence production is calculated from these measurements. The flow is characterized by an outer flow and by an inner flow extending to a distance of about α?1 from the mean level of the surface. Turbulence production in the inner region is fundamentally different from flow over a flat surface in that it is mainly associated with a shear layer that separates from the back of the wave. Flow close to the surface is best described by an interaction between the shear layer and the wall, which produces a retarded zone and a boundary-layer with large wall shear stresses. Measurements of the outer flow compare favorably with measurements over a flat wall if velocities are made dimensionless by a friction velocity defined with a shear stress obtained by extrapolating measurements of the Reynolds stress to the mean levels of the surface (rather than from the drag on the wall).  相似文献   

3.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

4.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

5.
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ = 2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions(VLSMs).The three dimen-sional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer(TBL).  相似文献   

6.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Turbulent coherent structures near a rod-roughened wall are scrutinized by analyzing instantaneous flow fields obtained from direct numerical simulations (DNSs) of a turbulent boundary layer (TBL). The roughness elements used are periodically arranged two-dimensional spanwise rods, and the roughness height is k/δ = 0.05 where δ is the boundary layer thickness. The Reynolds number based on the momentum thickness is varied in the range Reθ = 300–1400. The effect of surface roughness is examined by comparing the characteristics of the TBLs over smooth and rough walls. Although introduction of roughness elements onto the smooth wall affects the Reynolds stresses throughout the entire boundary layer when scaled by the friction velocity, the roughness has little effect on the vorticity fluctuations in the outer layer. Pressure-strain tensors of the transport equation for the Reynolds stresses and quadrant analysis disclose that the redistribution of turbulent kinetic energy of the rough wall is similar to that of the smooth wall, and that the roughness has little effect on the relative contributions of ejection and sweep motions in the outer layer. To elucidate the modifications of the near-wall vortical structure induced by surface roughness, we used two-point correlations, joint weighted probability density function, and linear stochastic estimation. Finally, we demonstrate the existence of coherent structures in the instantaneous flow field over the rod-roughened surface.  相似文献   

8.
PIV observations in a shear layer have been used to identify and characterize the discrete large-scale coherent motions (LSCMs) in the nominally self-preserving region: xo ≈ 450–610, of a shear layer. The LSCMs are given an objective definition wherein their centers are the (swirling flow pattern) nodes of the velocity-vector field as seen by an observer in the Galilean reference frame translating at an appropriately defined reference velocity. The statistical attributes of size, lateral location, and separation between these coherent motions (that exist in a single image) as well as their characteristic vorticity magnitude 〈ωmax〉 are reported.  相似文献   

9.
The unsteady pressure field is obtained from time-resolved tomographic particle image velocimetry (Tomo-PIV) measurement within a fully developed turbulent boundary layer at free stream velocity of U ???=?9.3?m/s and Re???=?2,400. The pressure field is evaluated from the velocity fields measured by Tomo-PIV at 10?kHz invoking the momentum equation for unsteady incompressible flows. The spatial integration of the pressure gradient is conducted by solving the Poisson pressure equation with fixed boundary conditions at the outer edge of the boundary layer. The PIV-based evaluation of the pressure field is validated against simultaneous surface pressure measurement using calibrated condenser microphones mounted behind a pinhole orifice. The comparison shows agreement between the two pressure signals obtained from the Tomo-PIV and the microphones with a cross-correlation coefficient of 0.6 while their power spectral densities (PSD) overlap up to 3?kHz. The impact of several parameters governing the pressure evaluation from the PIV data is evaluated. The use of the Tomo-PIV system with the application of three-dimensional momentum equation shows higher accuracy compared to the planar version of the technique. The results show that the evaluation of the wall pressure can be conducted using a domain as small as half the boundary layer thickness (0.5??99) in both the streamwise and the wall normal directions. The combination of a correlation sliding-average technique, the Lagrangian approach to the evaluation of the material derivative and the planar integration of the Poisson pressure equation results in the best agreement with the pressure measurement of the surface microphones.  相似文献   

10.
Direct numerical simulations of turbulent flow in a plane channel using spanwise alternatively distributed strips (SADS) are performed to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuations, and their role in suppressing flow separation. SADS control is obtained by alternatively applying out-of-phase control (OPC) and in-phase control (IPC) to the wall-normal velocity component of the lower channel wall, in the spanwise direction. Besides the non-controlled channel flow simulated as a reference, four controlled cases with 1, 2, 3 and 4 pairs of OPC/IPC strips are studied at M =?0.2 and R e =?6,000, based on the bulk velocity and the channel half height. The case with 2 pairs of strips, whose width is Δz + =?264 based on the friction velocity of the non-controlled case, is the most effective in terms of generating large-scale motions. It is also found that the OPC (resp. IPC) strips suppress (resp. enhance) the coherent structures and that leads to the creation of a vertical shear layer, which is responsible for the LSSVs presence. They are in a statistically steady state and their cores are located between two neighbouring OPC and IPC strips. These motions contribute significantly to the momentum transport in the wall-normal and spanwise directions showing potential for flow separation suppression.  相似文献   

11.
The hydrodynamics of planetary atmospheres and Interiors are frequently directly or indirectly connected with convective motions taking place in rotating liquid spherical layers in the field of a central force. Convective stability in a spherical layer at rest, in a central gravity field, was first discussed in [1, 2]. It was shown that the critical Rayleigh number Rao at which convective instability sets in and the wave number of the critical perturbations depend essentially on the thickness of the layer. As in the plane case, the problem of the convective stability of a spherical layer is found to be degenerate, and the form of the critical perturbations cannot be determined from the linear problem. In actuality, minimization of the Rayleigh number permits establishing only the wave numberl for the spherical harmonic Y l m (θ, ?), realized at the limit of stability; the parameter m remains indeterminate and thus 2l+1 independent convective modes correspond to Rao. In [3] a study was made of the convective stability of a liquid in a slowly rotating thin spherical layer. It was shown that the presence of rotation eliminates the degeneracy; at the limit of stability there arise motions corresponding to the Y l l (θ, ?) -harmonic with a degenerate maximum at the equator, and propagating in a wave manner toward the side opposite to the rotation. In the present work a study is made of the convective stability of a flow of liquid, arising in a rotating spherical layer due to a nonuniform distribution of the temperatures at one of the boundaries of the layer. In such a statement of the problem it is possible to model large-scale motions in the atmospheres of large planets having internal sources of heat and absorbing solar radiation near the cloud cover of the atmosphere. It is established that, depending on the relationships between the parameters imparting the rotation and the inhomogeneous distribution of the temperature, there is either stabilization or destabilization of the layer in comparison with a fixed layer of the same thickness and with the same, but uniformly distributed heat flux supplied to the layer. A study is made of the form of the corresponding critical perturbations.  相似文献   

12.
The near-field shear layer instabilities forming in round transverse jets of variable (reduced) densities relative to the crossflow are investigated through gas-phase experiments. Jets composed of helium and nitrogen mixtures are injected from a converging nozzle mounted flush with an injection wall into air crossflow, allowing the jet-to-crossflow density ratio S to be varied between 1.00, the equidensity case, and 0.14, at constant jet Reynolds number Re j ?=?1,800. Jet-to-crossflow momentum flux ratios J are examined in the range $\infty>J\geq5$ at incremental values of the density ratio S. The results of single-component hotwire measurements in the jet shear layer indicate that a transition to global instability likely occurs as J is brought below approximately 10, and/or as S is brought below approximately 0.45?C0.40. This observation appears to link many previous independent studies of both equidensity transverse jets and low-density free jets, which may become globally unstable under alteration of J and S, respectively. However, the dynamical character of the transition to global instability in the low-density transverse jet displays differences under independent variation of J and S, which may indicate the predominance of different modes.  相似文献   

13.
Extensive single point turbulence measurements made in the boundary layer on a mildly curved heated convex wall show that the turbulence heat fluxes and Stanton number are more sensitive to a change in wall curvature than the Reynolds stresses and skinfriction coefficient, and that downstream, as the flow adjusts to new curved conditions, the St/c f ratio of Reynolds analogy is appreciably lower than in plane wall flow for the same conditions. Details of the turbulence structure in unheated flow have been documented in an earlier paper; temperature field measurements now described comprise mean temperature distributions, the streamwise variation of wall heat flux, profiles of the temperature variance, transverse and streamwise heat fluxes, and triple correlations. Turbulent diffusion of heat flux is drastically reduced even by mild curvature; changes in the heat fluxes are of the same order as changes in the shear stress, that is, an order of magnitude greater than the ratio of boundary layer thickness to wall radius of curvature. The data include plane flow measurements taken in a developed boundary layer upstream of a change in wall curvature.  相似文献   

14.
Experiments on the melting of a vertical ice layer immersed in immiscible liquid yielded quantitative results both for the timewise evolution of the melting front and the heat transfer. Vegetable oil, which was contained in a rectangular vessel, was adopted as a testing liquid. A bubble-free ice block stuck on a cooled wall was installed vertically in the vessel. The experiments were carried out for the immiscible liquid temperatures from 7.6 to 30.0 °C, while for the cooled wall temperatures from 0 to ?11.5 °C. The flow structure of the liquid and the melting front were extensively observed and recorded photographically. It was found that the heat transfer and the rate of melting are significantly affected by a couple of fluid motions of both the water melt induced by melting of ice and the immiscible liquid based on free convection.  相似文献   

15.
 Turbulence measurements are reported on the three-dimensional turbulent boundary layer along the centerline of the flat endwall in a 30° bend. Profiles of mean velocities and Reynolds stresses were obtained down to y +≈2 for the mean flow and y +≈8 for the turbulent stresses. Mean velocity data collapsed well on a simple law-of-the-wall based on the magnitude of the resultant velocity. The turbulence intensity and turbulent shear stress magnitude both increased with increased three-dimensionality. The ratio of these two quantities, the a 1 structure parameter, decreased in the central regions of the boundary layer and showed profile similarity for y +<50. The shear stress vector angle lagged behind the velocity gradient vector angle in the outer region of the boundary layer, however there was an indication that the shear stress vector tends to lead the velocity gradient vector close to the wall. Received: 16 July 1996/Accepted: 14 July 1997  相似文献   

16.
Echo particle image velocimetry (Echo PIV) presents itself as an attractive in vivo flow quantification technique to traditional approaches. Promising results have been acquired; however, limited quantification and validation is available for post-stenotic flows. We focus here on the comprehensive evaluation of in vitro downstream stenotic flow quantified by Echo PIV and validated in relation to digital particle image velocimetry (DPIV). A Newtonian blood analog was circulated through a closed flow loop and quantified immediately downstream of a 50 % axisymmetric blockage at two Reynolds numbers (Re) using time-averaged Echo PIV and DPIV. Centerline velocities were in good agreement at all Re; however, Echo PIV measurements presented with elevated standard deviation (SD) at all measurements points. SD was improved using increased line density (LD); however, frame rate or field of view (FOV) is compromised. Radial velocity profiles showed close agreement with DPIV with the largest disparity in the shear layer and near-wall recirculation. Downstream recirculation zones were resolved by Echo PIV at both Re; however, magnitude and spatial coverage was reduced compared to DPIV that coincided with reduced contrast agent penetration beyond the shear layer. Our findings support the use of increased LD at a cost to FOV and highlight reduced microbubble penetration beyond the shear layer. High local SD at near-wall measurements suggests that further refinement is required before proceeding to in vivo quantification studies of wall shear stress in complex flow environments.  相似文献   

17.
PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution of u′ is bimodal in the separated shear layer downstream of the rib. The maximum Reynolds shear stresses occur at the leading edge of the rib. Based on quadrant analysis, it is found that ejection motions make a dominant contribution to the Reynolds shear stress in this region. Moreover, topology-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow.  相似文献   

18.
Experimental measurements of the wall shear stress and momentum thickness for thick axisymmetric turbulent boundary layers are presented. The use of a full-scale towing tank allowed zero pressure gradient turbulent boundary layers to be developed on cylinders with diameters of 0.61, 0.89, and 2.5 mm and lengths ranging from 30 m to 150 m. Moderate to high Reynolds numbers (104<Re <105, 108<Re L<109) are considered. The relationship between the mean wall shear stress, cylinder diameter, cylinder length, and speed was investigated, and the spatial growth of the momentum thickness was determined. The wall shear stress is significantly higher, and the spatial growth of the boundary layers is shown to be lower than for a comparable flat-plate case. The mean wall shear stress exhibits variations with length that are not seen in zero pressure gradient flat plate turbulent boundary layers. The ratio of outer to inner boundary layer length scales is found to vary linearly with Re , which is qualitatively similar to a flat plate turbulent boundary layer. The quantitative effect of a riblet cylindrical cross-sectional geometry scaled for drag reduction based on flat plate criteria was also measured. The flat plate criteria do not lead to drag reduction for this class of boundary layer shear flows.List of symbols a cylinder radius, mm - A s total cylindrical surface area, m2 - C d tangential drag coefficient - D drag force, Newtons - boundary layer thickness, mm - * displacement thickness, mm - h riblet height, mm - L cylinder length, m - kinematic viscosity, m2/s - momentum thickness, mm - fluid density, kg/m3 - r radial coordinate, mm - Re L Reynolds number based on length= - Re Reynolds number based on momentum thickness= - s riblet spacing, mm - w mean wall shear stress, N/m2 - u(r) mean streamwise velocity, m/s - u friction velocity= - U o tow speed, m/s - x streamwise coordinate, m  相似文献   

19.
The steady-state convective motions of a viscous fluid occupying a spherical layer R1 r R2, R2/R1=1.2 are studied. The non-deformable boundaries of the layer are assumed to be free of shear stresses. At the outer boundary the constant temperature and at the inner boundary the constant heat flux are given. The system of equations in the Boussinesq approximation is solved by the Galerkin method with time stabilization on the assumption of axial and equatorial symmetry. It is shown that at the point Ra=Rac the state of mechanical equilibrium loses stability and steady symmetrical supercritical bifurcation is observed. The modes most unstable in the linear sense determine the form of convection when Ra > Rac and the supercriticality is not too great. At Rayleigh numbers Rac < Ra < 200Rac there exists a set of steady-state solutions with different spatial structures. The realization of solutions of a particular type depends on the supercriticality and the initial conditions. The evolution of the solutions with variation of the Rayleigh number is investigated. The changes in the spatial kinetic energy spectra and the integral heat fluxes upon transition from one branch of the solutions to another and with variation of the supercriticality are analyzed. As the supercriticality increases, despite the excitation of more and more new small-scale modes, the large-scale motions begin to make an ever greater contribution to the total energy. The results obtained can be used for constructing hydrodynamic models of the global motions in the atmospheres of giant planets, the convective envelopes of stars, and in the depths of the earth's mantle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 17–24, November–December, 1989.  相似文献   

20.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号