首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Octahedral Fe3O4microcrystals were synthesized using a triethanolamine‐assisted route under hydrothermal conditions. The chemical compositions and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). During the hydrothermal process for the preparation of Fe3O4 octahedra, the possible mechanism was discussed to elucidate the formation of the octahedral Fe3O4microcrystals. Triethanolamine and hydrazine hydrate play important roles in the formation of the final products. The magnetic property of sample was evaluated on a vibrating sample magnetometer (VSM) at room temperature. The values of saturation magnetization and coercivity of octahedral Fe3O4are about 103 emu/g and 157 Oe, respectively. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Pure Co3O4 microcrystals were prepared by a hydrothermal method from Co(NO3)2·6H2O and urea solution, and the effect of thermal treatment time on the growth of Co3O4 microcrystals was studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV‐Vis absorption spectra. The results show that with the thermal treatment time increases from 2 h to 12 h, the shape of as‐prepared Co3O4 microcrystals changes from the hedgehog sphere‐like to the as‐cubic one that were stacked by lots of lamella, and finally cubes, and then longer time treatment will only lead to the size growth and agglomeration of particles. In conclusion, the cubic Co3O4 microcrystals of uniform size (∼6 μm) are synthesized via a 12‐h thermal treatment. Moreover, the synthesis mechanism has been studied.  相似文献   

3.
In the current paper we designed a simple glucose reduction route for synthesis of sheet‐like Cu dendrites on a high yield, using CuSO4 as the starting material. The reaction was carried out at 180 °C for 18 h in the absence of any structure‐directing agent. The product was characterized by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron diffraction (ED). Some factors influencing the shapes of Cu microcrystals, including the reaction temperature, time, and the concentration of the starting CuSO4, were investigated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present a facile solution‐phase method for the synthesis of Cu2S microcrystals with rod‐like morphologies by the reaction of sulfur with three‐dimensional substrate copper foam in a mixed solvent of ethylene glycol and deionized water. The lengths of Cu2S microrods are between 80 and 150 μm and the diameter is among 3 to 8 μm. Monodisperse Cu2S microrods self‐assemble into echinus structure. The samples were characterized by X‐ray powder diffraction and scanning electron microscopy. Energy dispersive X‐ray spectroscopy was further used to testifiy the purity of Cu2S. Catalysis performance proved that the obtained Cu2S materials possess superior catalytic efficiency on methylene blue with the assistance of H2O2. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A simple and facile solution route has been developed for phase and morphology controllable synthesis of antimony trioxide (Sb2O3) microcrystals. Orthorhombic phase and cubic phase Sb2O3 microcrystals have been selectively synthesized in high yield. The products were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as-obtained microcrystals exhibited a variety of morphologies and structures, such as microspindles, nanoplates, and octahedra. Several experimental parameters have been investigated to gain morphology control of Sb2O3 microcrystals. Based on the time-dependent experimental results, an aggregation, and recrystallization mechanism was proposed to describe the formation process of these novel microstructures.  相似文献   

6.
A series of Fex(PO4)y(OH)z·nH2O microcrystals were prepared by the hydrothermal reaction at 150 °C. The ratio of Fe2+/Fe3+ in Fex(PO4)y(OH)z·nH2O microcrystals can be adjusted by using Na2S2O3·5H2O as a reducing agent. The morphology control of Fex(PO4)y(OH)z·nH2O microcrystals was realized through regulating the molar ratio of LiAc·2H2O/FeCl3. Further, the morphology, structure and composition of Fex(PO4)y(OH)z·nH2O microcrystals were also investigated by x‐ray diffraction (XRD), x‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) techniques. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
PbS nano‐microcrystals were prepared from Pb(OAc)2·3H2O and sulfur in a solution without any surfactant using the solvothermal process. Different morphologies, mainly including polyhedron microcrystals and sphere‐like assemblies, were characterized using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). PbS nano‐microcrystals with cubic crystal structure were detected using X‐ray diffraction (XRD), electron diffraction (ED) and high resolution transmission electron micrograph (HRTEM) techniques. The optical properties were investigated by ultraviolet‐visible (UV‐vis) spectroscopy, and photoluminescence spectroscopy (PL). The UV‐vis absorption peaks of PbS exhibited a large blue‐shift and the PL spectra had a strong and broad emission bands centered at 408 nm. The crystal growth mechanism of PbS was also discussed.  相似文献   

9.
Cuprous oxide (Cu2O) microcrystals with various morphologies were prepared under mild hydrothermal condition. The samples were characterized by means of XRD, SEM, and UV/DRS. The morphology of the as‐prepared Cu2O microcrystals typically had cubic symmetry and the morphology evolution from radial, six hollow branches to truncated octahedra (again cubic) were realized by adding acetic acid. The peak relative intensity of XRD pattern shows that the exposed planes of samples is consistent with their morphology. A possible growth mechanism of Cu2O microcrystals is also proposed. The behavior of adsorption and photocatalysis of Cu2O microcrystals was investigated by degrading methyl orange (MO) in aqueous solution. The results show that the as‐prepared Cu2O radial six hollow branches microcrystals with exposed {110} planes have higher degradation efficiency to methyl orange (MO) than cubic ones with exposed {100} planes and truncated octahedral with exposed {111} planes microcrystals.  相似文献   

10.
Cross‐like Pr2(C2O4)3·10H2O micro‐particles were synthesized through a simple precipitation method at room temperature. The products were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), field‐emission scanning electron microscopy (FESEM), thermogravimetry–differential thermal analysis (TG‐DTA) and photoluminescence (PL). The possible formation mechanism of the cross‐like Pr2(C2O4)3·10H2O micro‐particles was discussed, and Pr6O11 with similar morphology was obtained by calcining the oxalate precursor. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The structure of the title complexes [Cu(AFO)2(H2O)2](ClO4)2.2(AFO).2H2O (AFO = 4,5‐Diazafluoren‐9‐one)has been established by single‐crystal X‐ray diffraction. The complex crystallizes in the triclinic space group P‐1 with cell constants a = 7.659(3) Å, b = 11.066(3) Å, c = 14.203(5) Å, alpha = 75.16(3)°, β = 79.87(3)°, gamma = 85.71(3)°, Z = 1. The structure was solved by direct methods and refined to R1 = 0.0595 (wR2 = 0.1164). The X‐ray analysis reveals that a pair of AFO ligands chelate to a Cu(II) atom in an asymmetric fashion with one Cu‐N bond being much longer than the other, the Cu(II) atom is further coordinated by a pair of aqua ligands to form an elongated octahedral geometry. In the crystal of the complex, the mononuclear complex cations [Cu(AFO)2(H2O)2]2+, uncoordinated AFO molecules, lattice water molecules and perchlorate anions are assembled into 3‐D structure via hydrogen bonds and π‐π stacking interaction.  相似文献   

12.
With a facile solvothermal method, Ag@Fe3O4 nanowire was successfully prepared and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained Ag@Fe3O4 nanowire posses enhanced peroxidase‐like activity with good stability and high absorbance. The optimization of pH, H2O2 concentration and loading capacity were carried out. The result of kinetic analysis indicates that the catalyzed reaction followed a Michaelis‐Menten behavior. The good peroxidase‐like activity makes Ag@Fe3O4 nanowire be promising for real application in biomedicine.  相似文献   

13.
ZnO/α‐Fe2O3 nanocomposites were fabricated through a two‐step hydrothermal method. The morphology and composition of the as‐synthesized products were characterized by X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The gas sensing properties of the fabricated products were investigated towards ethanol, acetone, propanol, isopropanol, formaldehyde, chloroform and so on. The results demonstrated that the ZnO/α‐Fe2O3 nanocomposites exhibited excellent sensing properties and showed remarkably higher sensing responses and much lower optimum operating temperature compared to individual ZnO and α‐Fe2O3. In addition, the ZnO/α‐Fe2O3 nanocomposites have some selectivity for ethanol, propanol and isopropanol. The possible gas sensing mechanism was also proposed. Our studies demonstrate that our fabricated materials could be widely used in the future.  相似文献   

14.
Highly ordered hexagonal prism microstructures of copper sulfide (CuS) by assembling nano-flakes have been synthesized with high yield via a facile one-step route. We synthesized CuS microstructures using low cost beginning materials CuSO4·5H2O and Na2S2O3·5H2O under lower reaction temperature (60 °C). Hexamethylinetetramin (C6H12N4, HMT) was introduced into the reaction system as a capped agent. The influence of reaction time and capping agent (HMT) on the final structure of products was studied systematically. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopes (EDS), and transmission electron microscopy (TEM). The possible mechanism for the formation of the interesting highly ordered hexagonal prism microstructures CuS was also proposed.  相似文献   

15.
《Journal of Non》1986,81(3):351-364
The compositions (in mol%) 40 MnFe2O4, 60 SiO2, and 42.8 CoFe2O4, 57.1 SiO2 have been melted and splat-quenched. The resulting materials have been analyzed using X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy, and room temperature Mössbauer spectroscopy.The quenched Mn-containing material was completely amorphous. Its Mössbauer spectrum contains two doublets, indicating Fe2+ and Fe3+ in distorted octahedral sites.The quenched Co-containing composition contained (Co, Fe)2SiO4 (olivine and (Co, Fe)2O4 (spinel) precipitates, 150–400 Å in diameter, in a glassy matrix. The Mössbauer spectrum contains three doublets, indicating octahedral Fe2+ in the olivine, distorted octahedral Fe2+ in the glass, and distorted octahedral Fe3+ in the glass. The spectrum also shows trace hyperfine splitting, attributed to the spinel ferrite.  相似文献   

16.
The title compound, Cu(H2O)6]Cl2.2{(CH2)6N4}.4H2O ( 1 ), has been prepared under mild hydrothermal conditions. Each CuII atom, located on a centre of symmetry, is coordinated by six water molecules in distorted octahedral coordination geometry. The hexamethylenetetramine molecule does not coordinate to the Cu atom but links with the Cu complex via three O—H…N hydrogen bonds. The remaining N atom of the hexamethylenetetramine is hydrogen‐bonded to the solvent water molecule. In the crystal structure, intermolecular O—H…O, O—H…N and O—H…Cl hydrogen bonds link the components into a three‐dimensional network. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Large amounts of dumbbell‐like Sb2S3 microcrystals were synthesized via a simple solvothermal treatment method. Various techniques such as x‐ray diffraction (XRD), field‐emission scanning electron microscope (FESEM), high‐resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and photoluminescence spectrometry (PL) have been used to characterize the obtained products. The results showed that the products belong to the orthorhombic Sb2S3 phase, and the dumbbell‐like Sb2S3 microcrystals were composed by uniform microrods. Besides, the morphologies of Sb2S3 microcrystals could be changed from microshperes to dumbbell‐like microcrystals by only adjusting the reaction solvent. The solvent effects are discussed in detail. Furthermore, the PL properties of the obtained Sb2S3 microcrystals clearly show shape effects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Single crystals of Sr2YRu1‐xCuxO6 (x = 0 ‐ 0.4) have been grown from PbO‐PbF2 based solutions in the temperature range 1150 – 1350°C. A silicon carbide heating element furnace (with a recrystallized alumina tube lining) in a vertical configuration was used to grow the crystals in platinum crucibles. Conditions for the stable growth of big crystals have been investigated. The morphology of the crystals containing Cu was found to change from octahedral to cube octahedral as the growth temperature is increased from 1150 to 1350°C. Crystals measuring up to 4.5 mm across and 2.5 mm thick have been grown from 1250°C. The incorporation of Cu into the crystals was ascertained by EDS and x‐ray diffraction analysis. A diamagnetic transition which increased in magnitude and temperature with x was observed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Single crystalline strontium chloroborate (Sr2B5O9Cl) whiskers with uniform diameter have been synthesized by a facile route based on the calcination of precursor. The precursor was prepared by the sedimentation reaction between SrCl2 and Na2B4O7 aqueous solution. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrum (FT‐IR). An optimal synthesis temperature for preparing Sr2B5O9Cl whiskers was obtained, and the possible formation process was also presented.  相似文献   

20.
Mesoporous Al2O3 were positively synthesized via treatment of the freshly precipitated amorphous alumina gel using aluminium sulphate as aluminium source, and sodium dodecyl sulphate (SDS) as structure‐directing agent (SDAs). The microstructures, morphologies and textural properties of the as‐prepared materials were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and thermo gravimetric analysis (TG‐DTA). The calcined product at 600 °C was highly porous in nature having a BET surface area of 42 m2/g. These porous Al2O3 exhibits excellent adsorption performance for Congo red and the corresponding decolourisation efficiencies reached 99% in just 15 min at 27 °C. The subsequent calcined product at 1200 °C is the alpha alumina single crystal hexagonal platelets with rhombohedral crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号