首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A continuation method has been used with a finite element grid and a geometric perturbation to compute two successive symmetry breaking flow transitions with increasing Reynolds number in flow of generalized Newtonian fluids through a sudden planar expansion. With an expansion ratio of 16, the onset Reynolds number is particularly sensitive to small geometric asymmetry and the critical Reynolds numbers for the two successive flow transitions are found to be very close. These transitions are delayed to higher onset Reynolds numbers by increasing the degree of pseudoplasticity. This trend is observed experimentally as well in this work and may be attributed to the competing effects of shear thinning and inertia on the size of the corner vortex before the symmetry breaking flow transition. After the second transition with an expansion ratio of 16, the two large staggered vortices on opposite walls occupy most of the transverse dimension so that the core flow between the vortices appears as a thin jet oscillating along the flow direction. This is more pronounced for the pseudoplastic liquid. After the second transition, the degree of flow asymmetry at a given location downstream of the expansion plane is larger for the pseudoplastic liquid than for the Newtonian liquid at comparable Reynolds numbers. The last feature is also evident in the experimentally observed velocity profiles. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In many fluid flows of practical importance transition is caused by the linear growth of wave instabilities, such as Tollmien–Schlichting waves, which eventually grow to a finite size at which stage secondary instabilities come into play. If transition is to be delayed or even avoided in such flows, then the linear growth of the disturbances must be prevented since control in the nonlinear regime would be a considerably more difficult task. Here a strategy for active control of two-dimensional incompressible and compressible Tollmien–Schlichting waves and its use in controlling the more practically relevant problem of crossflow instability which arises in swept-wing flows is discussed. The control is through an active suction/blowing distribution at the wall though the same result could be achieved by variable wall heating. In order to control the instability it is assumed that the wall shear stress and pressure are known from measurements. It is shown that, certainly at finite Reynolds numbers, it is sufficient to know the flow properties at a finite number of points along the wall. The cases of high and finite Reynolds numbers are discussed using asymptotic and numerical methods respectively. It is shown that a control strategy can be developed to stop the growth of all two-dimensional Tollmien–Schlichting waves at finite and large Reynolds numbers. Some discussion of nonlinear effects in the presence of active control is given and the possible control of other instability mechanisms investigated. Received 1 May 1998 and accepted 24 September 1998  相似文献   

3.
A review of our work on the stability of plane Couette flow of a viscoelastic liquid is given. The first part of the review is based on the assumption of a “short memory” of the fluid. The Reynolds-Orr energy criterion intimates the possibility of instability at very low Reynolds numbers. A linear stability analysis for disturbances in the flow plane shows that beyond the stability limit given by the energy criterion there are always disturbances which grow with time. A critical assessment of the short memory theory shows the severe limitations of its applicability.In the second part of the paper, the assumption of short memory is dropped. The stability of plane Couette flow with respect to special disturbances perpendicular to the flow plane is investigated for a Maxwell fluid. The flow is unstable if the product of Reynolds number and Weissenberg number is higher than a certain limit, which has the value one for a simple Maxwell fluid. This result can also be interpreted as follows: The flow becomes unstable if the velocity at the boundary walls is higher than the shear wave velocity of the fluid.  相似文献   

4.
A non-planar or a bilateral mixing-layer is studied by means of a series of direct numerical simulations (DNSs). This mixing-layer forms at the interface of two co-current plane Couette flows of different Reynolds numbers. The current DNS study determined the conditions for the onset of shear-layer instability at the interface. The influence of different Reynolds number (of the co-current plane Couette flows) and their Reynolds number ratio on the mixing-layer is studied. A critical Reynolds number of about 500 (or more particularly one of the co-current plane Couette flows must be turbulent) and a Reynolds number ratio greater than 2 is required for the genesis of this bilateral shear-layer instability. Independent of the Reynolds number and the Reynolds number ratio, the temporal evolution of the shear-layer instability followed the same pattern. In addition, the oscillation frequency of the instability was found to increase with increasing Reynolds number and increasing Reynolds number ratio. Further, influence of instability on the local skin friction and the two-point correlation is elaborated on.  相似文献   

5.
It is well known that plane creeping Couette flow of UCM and Oldroy-B fluids are linearly stable. However, for Burges fluid, which includes UCM and Oldroyd-B fluids as special cases, unstable modes are detected in the present work. The wave speed, critical parameters and perturbation mode are studied for neutral waves. Energy analysis shows that the sustaining of perturbation energy in Poiseuille flow and Couette flow is completely different. At low Reynolds number limit, analytical solutions are obtained for simplified perturbation equations. The essential difference between Burgers fluid and Oldroyd-B fluid is revealed to be the fact that neutral mode exists only in the former.  相似文献   

6.
A numerical investigation of the flow past a circular cylinder centred in a two-dimensional channel of varying width is presented. For low Reynolds numbers, the flow is steady. For higher Reynolds numbers, vortices begin to shed periodically from the cylinder. In general, the Strouhal frequency of the shedding vortices increases with blockage ratio. In addition, a two-dimensional instability of the periodic vortex shedding is found, both empirically and by means of a Floquet stability analysis. The instability leads to a beating behaviour in the lift and drag coefficients of the cylinder, which occurs at a Reynolds number higher than the critical Reynolds number for the three-dimensional mode A-type instability, but lower than a Reynolds number for any mode B-type instability.  相似文献   

7.
Viscoelastic flow around a confined cylinder at high Deborah numbers is studied using microfluidic channels. By varying fluid properties and flow rates, a systematic study of the roles of elasticity and inertia is accomplished. Two new elastic flow instabilities that occur at high Deborah numbers are identified. A downstream instability of disordered and temporally varying streamlines is observed at a Deborah number above 10. This instability is a precursor to an unsteady vortex that develops upstream of the cylinder at higher Deborah numbers. Both instabilities occur at moderate Reynolds numbers but are fundamentally elastic. The size and steadiness of the upstream vortex are primarily controlled by the Deborah and the elasticity number.  相似文献   

8.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

9.
Two-dimensional nonlinear equilibrium solutions for the plane Poiseuille–Couette flow are computed by directly solving the full Navier–Stokes equations as a nonlinear eigenvalue problem. The equations are solved using the two-point fourth-order compact scheme and the Newton–Raphson iteration technique. The linear eigenvalue computations show that the combined Poiseuille–Couette flow is stable at all Reynolds numbers when the Couette velocity component σ2 exceeds 0.34552. Starting with the neutral solution for the plane Poiseuille flow, the nonlinear neutral surfaces for the combined Poiseuille–Couette flow were mapped out by gradually increasing the velocity component σ2. It is found that, for small σ2, the neutral surfaces stay in the same family as that for the plane Poiseuille flow, and the nonlinear critical Reynolds number gradually increases with increasing σ2. When the Couette velocity component is increased further, the neutral curve deviates from that for the Poiseuille flow with an appearance of a new loop at low wave numbers and at very low energy. By gradually increasing the σ2 values at a constant Reynolds number, the nonlinear critical Reynolds numbers were determined as a function of σ2. The results show that the nonlinear neutral curve is similar in shape to a linear case. The critical Reynolds number increases slowly up to σ2∼ 0.2 and remains constant until σ2∼ 0.58. Beyond σ2 > 0.59, the critical Reynolds number increases sharply. From the computed results it is concluded that two-dimensional nonlinear equilibrium solutions do not exist beyond a critical σ2 value of about 0.59. Received: 26 November 1996 and accepted 12 May 1997  相似文献   

10.
The two cases of stationary Ekman boundary layer flow of an incompressible fluid near i) a plane boundary and ii) a free surface with constant shear are considered. It is proven that a stable secondary flow in the form of traveling waves bifurcates from the stationary flow at a certain Reynolds number, and that the stationary flow is unstable above this number. The values of the critical Reynolds number and of the numbers that characterize the traveling wave are computed and compared with experimental values.  相似文献   

11.
The inflexion point criterion of Rayleigh is one of the most well-known results in hydrodynamic stability theory but cannot easily be demonstrated experimentally in wall bounded flows. For plane Couette flow, where both walls move with equal speed in opposite directions, it is possible to establish a (time-dependent) inflectional velocity profile if both walls are brought momentarily to rest. If the Reynolds number is high enough a growing stationary instability develops. This situation is ideally suited for flow visualization of the instability. In this paper we show flow visualization experiments and stability calculations of the developing transverse roll cell instability in such a flow at low Reynolds numbers. Although the stability calculations are based on a quasi-stationary velocity profile, the measured and most amplified wave length obtained from the calculations are in excellent agreement.  相似文献   

12.
DNS of passive thermal turbulent Couette flow at several friction Reynolds numbers (180, 250, and 500), and the Prandtl number of air are presented. The time averaged thermal flow shows the existence of long and wide thermal structures never described before in Couette flows. These thermal structures, named CTFS (Couette Thermal Flow Superstructures), are defined as coherent regions of hot and cold temperature fluctuations. They are intrinsically linked to the velocity structures present in Couette flows. Two different 2D symmetries can be recognized, which get stronger with the Reynolds number. These structures do not affect the mean flow or mean quantities as the Nusselt number. However, turbulent intensities and thermal fluxes depend on the width of the structures, mainly far from the walls. Since the width of the structures is related to the channel width, the statistics of thermal Couette flow are to some point box-dependent.  相似文献   

13.
The complex flow resulting from the laminar-turbulent transition in a sudden expansion pipe flow, with expansion ratio of 1:2, subjected to an inlet parabolic velocity profile and a vortex perturbation, is investigated by means of direct numerical simulations. It is shown that the threshold amplitude for disordered motion is described by a power law scaling, with -3 exponent, as a function of the subcritical Reynolds number. The instability originates from a region of intense shear rate, which results on the flow symmetry breakdown. Above the threshold, several unsteady states are identified using space-time diagrams of the centreline axial velocity fluctuation and their energy. In addition, the simulations show a small hysteresis transition mode due to the reestablishment of the recirculation region in the subcritical range of Reynolds numbers, which depends on: (i) The initial and final quasi-steady states, (ii) the observation time and (iii) the number of intermediate steps taken when increasing and decreasing the Reynolds number.  相似文献   

14.
The stability of the laminar flow regime in the boundary layer developed on a wall is increased considerably by the relatively slight extraction of fluid from the wall [1–4]. In the theoretical study of this phenomenon, all the investigators known to the present authors have taken into account only the increase in the fullness of the velocity profile in the boundary layer with suction. Computations of the stability characteristics have been made on the assumption that there are no transverse velocities in the laminar boundary layer.We present below an analysis of the stability of the laminar boundary layer in the presence of a constant transverse velocity in the near-wall region (suction). The calculations made show the existence for a given velocity profile in the boundary layer of a relative suction velocity v=v such that with suction velocities greater than v the flow remains stable at all Reynolds numbers, while the method used in the cited references gives a definite finite critical Reynolds number, equal in our notation to the Reynolds number at v=0, for each relative suction velocity.It was found that with suction of fluid from the boundary layer the region of instability has finite dimensions, i.e., there exist lower and upper critical Reynolds numbers. The flow is stable if its Reynolds number is less than the lower, or greater than the upper values of the critical Reynolds number.The instability region diminishes with increase in the relative suction velocity, and at a value of this velocity which is specific for each value of the velocity profile the instability region degenerates into a point-the flow becomes absolutely stable. Thus, with distributed suction it is advisable to increase the relative suction velocity only to a definite magnitude corresponding to disappearance of the instability region. The computational results presented make it possible to estimate this velocity for velocity profiles ranging from a Blasius profile to an asymptotic profile. Specific calculations were made for a family of Wuest profiles, since under actual conditions with suction there always exists a starting segment of the boundary layer [1, 2].  相似文献   

15.
The stability of the plane flow of an electrically conducting fluid with respect to small perturbations was studied at large Reynolds numbers in the presence of a longitudinal magnetic field. The dependence of the critical Reynolds number on the electrical conductivity is investigated. At large Reynolds numbers, a new branch of instability and a sudden change in the critical Reynolds numbers is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 45–53, May–June, 2008.  相似文献   

16.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The paper is devoted to a theoretical analysis of a counter-current gas-liquid flow between two inclined plates. We linearized the Navier–Stokes equations and carried out a stability analysis of the basic steady-state solution over a wide variation of the liquid Reynolds number and the gas superficial velocity. As a result, we found two modes of the unstable disturbances and computed the wavelength and phase velocity of their neutral disturbances varying the liquid and gas Reynolds number. The first mode is a “surface mode” that corresponds to the Kapitza's waves at small values of the gas superficial velocity. We found that the dependence of the neutral disturbance wavelength on the liquid Reynolds number strongly depends on the gas superficial velocity, the distance between the plates and the channel inclination angle for this mode. The second mode of the unstable disturbances corresponds to the transition to a turbulent flow in the gas phase and there is a critical value of the gas Reynolds number for this mode. We obtained that this critical Reynolds number weakly depends on both the channel inclination angle, the distance between the plates and the liquid flow parameters for the conditions considered in the paper. Despite a thorough search, we did not find the unstable modes that may correspond to the instability in frame of the viscous (or inviscid) Kelvin–Helmholtz heuristic analysis.  相似文献   

18.
Streamwise streaks generated from a pair of oblique waves and secondary instability of the streaks are studied in a two-dimensional bent channel. Nonlinear parabolized stability equations (NPSE) are employed to investigate streamwise streaks and vortices. A pair of oblique waves from linear stability analysis is imposed as initial disturbances. Generation of streamwise streaks and vortices and subsequent development are described in detail. The case of plane channel is also studied to provide comparable data. Through comparison, the effect of bent region is clearly highlighted. Results of parametric studies to examine the effect of Reynolds number, radius of curvature, and bent angle are also given and discussed in detail. Secondary instability analysis for the modified mean flow due to the streamwise streaks is carried out by solving a two-dimensional eigenvalue problem. Several unstable modes which can be classified into fundamental and subharmonic mode of secondary instability are identified. Among several unstable modes, two modes are turned out to be dominant modes. Details on these two modes including generation mechanism, typical pattern, and dependency on wave number and streak amplitude are discussed. It is found that the presence of bent channel can lead to early oblique-mode breakdown via strong growth of the streamwise streaks due to the curved section. Such large amplitude of streaks and its secondary instability eventually could trigger transition even for small amplitude oblique waves at subcritical channel Reynolds numbers.  相似文献   

19.
Accurate prediction of laminar to turbulent transition in high-speed flows is a challenging task. Compressibility, and the resultant large variations in the transport properties can affect the transition process significantly. In this paper, we study the influence of Prandtl number, the ratio of momentum to heat diffusivity, in Couette flows at high Mach numbers. It is a part of an ongoing research programme to isolate and understand the transport property effects on the stability of high-speed flows. As a first step, we neglect the high-temperature effects and vary the Prandtl number in the range 0.9 to 0.2, by changing the relative magnitudes of viscosity and conductivity. A temporal linear stability analysis shows that the variation of phase speed with Prandtl number leads to synchronization between two acoustic modes, with peaks in growth rate at the synchronization points. Two types of branching patterns are observed depending on the Prandtl number, and the branch type determines which of the two modes is destabilized and which one is stabilized due to synchronization. Further, the mode shapes are either retained as earlier or interchanged between the two acoustic modes depending on the branching pattern. The stability diagrams for varying Mach and Reynolds numbers show a destabilizing role of decreasing the Prandtl number, both in terms of increased disturbance growth rates, and of larger regions of instability in the parameter space. It also results in a significant reduction in the critical Reynolds number of the flow, especially at high Mach numbers with wall cooling.  相似文献   

20.
The nonlinear problem of the evolution of an initial perturbation in Couette flow is solved in the quadratic approximation and it is shown that the energy of the initial perturbation is transmitted to the main flow so that its profile is somewhat modified. The evolution of the initial perturbation in a fluid with a very simple model flow profile which, in addition to continuous-spectrum waves, also admits the existence of a single neutral mode of the discrete spectrum is then investigated. It is shown that as a result of the linear resonant interaction of the discrete-spectrum and continuous-spectrum waves disturbances that grow linearly with time may be formed. A flow that does not contain exponentially growing modes will be unstable with respect to certain initial disturbances; this instability is called algebraic [6, 7]. A physical interpretation of this effect is given. From this interpretation it is clear that algebraic instability is possible in a fluid with flow profiles of a more general type, in which there are neutral or weakly damped discrete-spectrum modes having a critical layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 116–123, July–August, 1989.The author is grateful to G. I. Barenblatt, S. Ya. Gertsenshtein, M. A. Mironov, S. A. Rybak, O. S. Ryzhov, and E. D. Terent'ev for their interest and useful comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号