首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A flow and heat transfer numerical simulation is performed for a 2D laminar incompressible gas flow through a constricted microchannel in the slip regime with constant wall temperature. The effects of rarefaction, creeping flow, first order slip boundary conditions and hydrodynamically/thermally developing flow are assumed. The effects of Knudsen number and geometry on thermal and hydrodynamic characteristics of flow in a constricted microchannel are explored. SIMPLE algorithm in curvilinear coordinate is used to solve the governing equations including continuity, energy and momentum with the temperature jump and velocity slip conditions at the solid walls in discretized form. The resulting velocity and temperature profiles are then utilized to obtain the microchannel C f Re and Nusselt number as a function of Knudsen number and geometry. The results show that Knudsen number has declining effect on the C f Re and Nusselt number in the constricted microchannel. In addition, the temperature jump on wall and slip velocity increase with increasing Knudsen number. Moreover, by decreasing the throttle area, the fluid flow characteristics experience more intense variations in the constricted region. To verify the code a comparison is carried out with available results and good agreement is achieved.  相似文献   

2.
A synthetic jet is considered to control microflows, where the Knudsen number is between 0.001 and 0.1. The flow is modelled with the compressible, 2D Navier–Stokes equations. The wall boundary conditions are modified for the slip velocity and the temperature jump encountered for this Knudsen number range. The membrane motion is modelled as a moving boundary. After a validation using experimental results available only for a macroflow over a hump, the present study focuses on developing a design optimisation methodology for micro-synthetic jets in micro-scale, laminar crossflow. First, single-variable optimisations are performed. As compared to the baseline case, the optimisations yield 2, 15, 15 and 200% increase in actuation efficiency for the cases varying the orifice width, the orifice height, the cavity height and the frequency, respectively. Then, multi-variable shape optimisation is performed. Compared to the baseline case, the optimisation using shape parameters results in a 7-fold increase in the actuation efficiency, while the optimisation with Bezier polynomials results in more than a 10-fold increase.  相似文献   

3.
Burnett simulations of gas flow in microchannels   总被引:1,自引:0,他引:1  
The Burnett equations with slip boundary conditions are used to model the gas flow in microchannels in transition flow regime. As the Navier-Stokes equations are not appropriate to model the gas flow in this regime, the higher-order Burnett equations are adopted in the present study. In earlier studies, convergent solutions of the Burnett equations of microPoiseuille flow could only be obtained when Knudsen number is less than 0.2. By using a relaxation method on the boundary values, convergent solutions of the Burnett equations can be obtained even when Knudsen number reaches 0.4. The solutions of Burnett equations agree very well with experimental data and direct simulation Monte Carlo (DSMC) results. The pressure distributions and velocity profiles are then discussed in detail.  相似文献   

4.
For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier–Stokes solution in the non‐continuum non‐equilibrium regime. In this investigation, the optimal modifications are found by a linear least‐squares fit of the Navier–Stokes solution to the non‐equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non‐equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non‐zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L2 error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
讨论壁面有引射的滑移边界条件的提法.利用Chapman Enskog速度分布函数,通过分析Knudsen层外缘和壁面处的质量、动量和能量等通量守恒,得到了有壁面引射的多组元气体有催化反应的壁面滑移边界条件方程组.利用粘性激波层方程和所得的边界条件对钝头体绕流驻点区的流场进行了计算,讨论了物面引射对边界上诸量及流场的影响  相似文献   

6.
In this paper, second order velocity slip and temperature jump boundary conditions are used to solve the momentum and energy equations along with isoflux thermal boundary condition at the surface of the micropipe. The flow is assumed to be hydrodynamically and thermally fully developed inside the micropipe and viscous dissipation is included in the analysis. The solution yields closed form expressions for the temperature field and Nusselt number (Nu) as a function of various modeling parameters, namely, Knudsen number and Brinkman number (Br). For the given values of Br, the maximum difference of Nu between continuum flow with first order slip model and continuum and, second order slip model is found to be 35.67 and 34.62 %, respectively. Present solution exhibits good agreement with the other theoretical models.  相似文献   

7.
李明 《固体力学学报》2017,38(5):426-432
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑管型区域内滑移边界条件以及碳纳米管的小尺度效应,应用哈密顿原理获得了温度场与轴向磁场共同作用下的输流单层固支碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了多场中单层固支输流碳纳米管的振动与失稳问题。结果表明:温度场、轴向磁场强度、Knudsen数及小尺度参数都会对系统振动频率以及失稳临界流速产生影响。  相似文献   

8.
Forced convection heat transfer characteristics around a microsphere subjected to uniform heat flux boundary condition is numerically investigated in this study. Moderate to high values of Reynolds number and a wide range of Prandtl number are considered. The analysis assumes that the continuity assumption is valid and hence the Navier–Stokes equations are solved for the range of Knudsen number of 0.001 ≤ Kn ≤ 0.1. The appropriate boundary conditions at the surface of the microsphere; the velocity slip and temperature jump are applied. The effect of the flow parameters: Re, Pr and Kn on the velocity and temperature distribution is presented and hence a better control on the boundary layer thickness can be achieved in the microscale level. Furthermore, the effect of the controlling parameters on the delay of flow separation, reduced shear stress, drag coefficient and on the Nusselt number profiles is also presented in the results.  相似文献   

9.
谢翀  樊菁 《力学学报》2007,39(1):1-6
对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离.为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果.  相似文献   

10.
A set of linearized 26 moment equations, along with their wall boundary conditions, are derived and used to study low-speed gas flows dominated by Knudsen layers. Analytical solutions are obtained for Kramers’ defect velocity and the velocity-slip coefficient. These results are compared to the numerical solution of the BGK kinetic equation. From the analysis, a new effective viscosity model for the Navier–Stokes equations is proposed. In addition, an analytical expression for the velocity field in planar pressure-driven Poiseuille flow is derived. The mass flow rate obtained from integrating the velocity profile shows good agreement with the results from the numerical solution of the linearized Boltzmann equation. These results are good for Knudsen numbers up to 3 and for a wide range of accommodation coefficients. The Knudsen minimum phenomenon is also well captured by the present linearized 26-moment equations.  相似文献   

11.
In this paper, we investigate the effect of nano-flow on vibration of nano-pipe conveying fluid using Knudsen (Kn). We use Euler–Bernoulli plug-flow beam theory. We modify no-slip condition of nano-pipe conveying fluid based on Kn. We define a Kn-dependent flow velocity. We consider effect of slip condition, for a liquid and a gas flow. We reformulate Navier–Stokes equations, with modified versions of Kn-dependent flow velocity. We observe that for passage of gas through nano-pipe with nonzero Kn, the critical flow velocities decreased considerably as opposed to those for zero Kn. This can show that ignoring Kn effect on a gas nano-flow may cause non-conservative design of nano-devices. Furthermore, a more impressive phenomenon happens in the case of clamped-pinned pipe conveying gas fluid. While we do not observe any coupled-mode flutter for a zero Kn, we can see the coupled-mode flutter, accompanying the second-mode divergence, for a nonzero Kn.  相似文献   

12.
In this paper a model was developed to describe the shear flow resistance force and torque acting on a fine particle as it slides on the slip surface of a rising gas bubble. The shear flow close to the bubble surface was predicted using a Taylor series and the numerical data obtained from the Navier–Stokes equations as a function of the polar coordinates at the bubble surface, the bubble Reynolds number, and the gas hold-up. The particle size was considered to be sufficiently small relative to the bubble size that the bubble surface could be locally approximated to a planar interface. The Stokes equation for the disturbance shear flows was solved for the velocity components and pressure using series of bispherical coordinates and the boundary conditions at the no-slip particle surface and the slip bubble surface. The solutions for the disturbance flows were then used to calculate the flow resistance force and torque on the particle as a function of the separation distance between the bubble and particle surfaces. The resistance functions were determined by dividing the actual force and torque by the corresponding (Stokes) force and torque in the bulk phase. Finally, numerical and simplified analytical rational approximate solutions for force correction factors for sliding particles as a function of the (whole range of the) separation distance are presented, which are in good agreement with the exact numerical result and can be readily applied to more general modelling of the bubble–particle interactions.  相似文献   

13.
Numerical simulations of shock wave propagation in microchannels and microtubes (viscous shock tube problem) have been performed using three different approaches: the Navier–Stokes equations with the velocity slip and temperature jump boundary conditions, the statistical Direct Simulation Monte Carlo method for the Boltzmann equation, and the model kinetic Bhatnagar–Gross–Krook equation with the Shakhov equilibrium distribution function. Effects of flow rarefaction and dissipation are investigated and the results obtained with different approaches are compared. A parametric study of the problem for different Knudsen numbers and initial shock strengths is carried out using the Navier–Stokes computations.   相似文献   

14.
Steady laminar forced convection gaseous slip-flow through parallel-plates micro-channel filled with porous medium under Local Thermal Non-Equilibrium (LTNE) condition is studied numerically. We consider incompressible Newtonian gas flow, which is hydrodynamically fully developed while thermally is developing. The Darcy–Brinkman–Forchheimer model embedded in the Navier–Stokes equations is used to model the flow within the porous domain. The present study reports the effect of several operating parameters on velocity slip and temperature jump at the wall. Mainly, the current study demonstrates the effects of: Knudsen number (Kn), Darcy number (Da), Forchheimer number (Γ), Peclet number (Pe), Biot number (Bi), and effective thermal conductivity ratio (K R) on velocity slip and temperature jump at the wall. Results are given in terms of skin friction (C f Re *) and Nusselt number (Nu). It is found that the skin friction: (1) increases as Darcy number increases; (2) decreases as Forchheimer number or Knudsen number increases. Heat transfer is found to (1) decreases as the Knudsen number, Forchheimer number, or K R increases; (2) increases as the Peclet number, Darcy number, or Biot number increases.  相似文献   

15.
16.
The conventional Burnett equations with second-order velocity slip and temperature jump conditions were applied to the steady-state micro Couette flow of a Maxwellian monatomic gas. An analytical approach as well as a relaxation method was used to determine the velocity slip and temperature jump at the wall. Convergent solutions to the Burnett equations were obtained on arbitrary fine numerical grids for all Knudsen numbers (Kn) up to the limit of the equations’ validity. The Burnett equations with second-order slip conditions indicate a much better agreement with DSMC data over the first-order slip conditions at high Kn. The convergent Burnett solutions were obtained in orders of magnitude quicker than that with the corresponding DSMC simulation. The augmented Burnett equations were also introduced to model the flow but no obvious improvement in the results was found.  相似文献   

17.
Zhang  Yongchao  Zeng  Jianhui  Cai  Jianchao  Feng  Sen  Feng  Xiao  Qiao  Juncheng 《Transport in Porous Media》2019,126(3):633-653

Shale reservoirs are characterized by very low permeability in the scale of nano-Darcy. This is due to the nanometer scale of pores and throats in shale reservoirs, which causes a difference in flow behavior from conventional reservoirs. Slip flow is considered to be one of the main flow regimes affecting the flow behavior in shale gas reservoirs and has been widely studied in the literature. However, the important mechanism of gas desorption or adsorption that happens in shale reservoirs has not been investigated thoroughly in the literature. This paper aims to study slip flow together with gas desorption in shale gas reservoirs using pore network modeling. To do so, the compressible Stokes equation with proper boundary conditions was applied to model gas flow in a pore network that properly represents the pore size distribution of typical shale reservoirs. A pore network model was created using the digitized image of a thin section of a Berea sandstone and scaled down to represent the pore size range of shale reservoirs. Based on the size of pores in the network and the pore pressure applied, the Knudsen number which controls the flow regimes was within the slip flow regime range. Compressible Stokes equation with proper boundary conditions at the pore’s walls was applied to model the gas flow. The desorption mechanism was also included through a boundary condition by deriving a velocity term using Langmuir-type isotherm. It was observed that when the slip flow was activated together with desorption in the model, their contributions were not summative. That, is the slippage effect limited the desorption mechanism through a reduction of pressure drop. Eagle Ford and Barnett shale samples were investigated in this study when the measured adsorption isotherm data from the literature were used. Barnett sample showed larger contribution of gas desorption toward gas recovery as compared to Eagle Ford sample. This paper has produced a pore network model to further understand the gas desorption and the slip flow effects in recovery of shale gas reservoirs.

  相似文献   

18.
构建了一个模拟复杂微通道内气体流动的多松弛格子Boltzmann模型。该模型采用动力学曲面滑移边界,考虑了微尺度效应和努森层影响。此外,为了更准确地描述微通道内气体的滑移速度,在模型中引入孔隙局部Kn数来代替平均Kn数。之后采用Poiseuille流对模型进行验证,模拟结果与用直接模拟蒙特卡洛方法和分子模拟结果吻合较好,证明了该模型模拟微通道内处于滑移区和过渡区气体流动的有效性。最后,采用该模型模拟多孔介质内气体渗流过程。结果表明,随着孔隙平均Kn数的增加,多孔介质内的高渗区域增加,且优先从小孔隙中开始增加,这是由于小孔隙中微尺度效应更加明显,相对大孔隙流动阻力更小所致。  相似文献   

19.
The permeability of reservoir rocks is most commonly measured with an atmospheric gas. Permeability is greater for a gas than for a liquid. The Klinkenberg equation gives a semi-empirical relation between the liquid and gas permeabilities. In this paper, the wall-slip gas flow problem is homogenized. This problem is described by the steady state, low velocity Navier–Stokes equations for a compressible gas with a small Knudsen number. Darcy's law with a permeability tensor equal to that of liquid flow is shown to be valid to the lowest order. The lowest order wall-slip correction is a local tensorial form of the Klinkenberg equation. The Klinkenberg permeability is a positive tensor. It is in general not symmetric, but may under some conditions, which we specify, be symmetric. Our result reduces to the Klinkenberg equation for constant viscosity gas flow in isotropic media.  相似文献   

20.
In this paper, both DSMC and Navier–Stokes computational approaches were applied to study micronozzle flow. The effects of inlet condition, wall boundary condition, Reynolds number, micronozzle geometry and Knudsen number on the micronozzle flow field and propulsion performance were studied in detail. It is found that within the Knudsen number range under consideration, both the methods work to predict flow characteristics inside micronozzles. The continuum method with slip boundary conditions has shown good performance in simulating the formation of a boundary layer inside the nozzle. However, in the nozzle exit lip region, the DSMC method is better due to gas rapid expansion. It is found that with decreasing the inlet pressure, the difference between the continuum model and DSMC results increases due to the enhanced rarefaction effect. The coefficient of discharge and the thrust efficiency increase with increasing the Reynolds number. Thrust is almost proportional to the nozzle width. With dimension enlarged, the nozzle performance becomes better while the rarefaction effects would be somewhat weakened.The project supported by the National Natural Science Foundation of China (10372099). The English text was polished by Boyi Wang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号