首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BaTiO3 dense ceramics with different grain sizes from 5.6 µm down to 35 nm were thoroughly studied by Raman spectroscopy. The temperature characteristics of optical phonons were compared with those obtained for powders. The micrograined ceramic revealed the well‐known spectrum profiles and transitions, typical for bulk BaTiO3. On the other hand, the Raman spectra obtained for a nanograined ceramic with an average grain size of 35 nm revealed a tetragonally distorted pure BaTiO3 phase showing a diffused phase transition behaviour with respect to temperature. Abnormality of phonon damping characteristics for the nanograined ceramic was demonstrated through comparison with powders with various crystallite sizes and the micrograined ceramic. The Curie temperature of the nanograined ceramic was estimated to be 105 °C from the temperature characteristic of a sharp peak at 307 cm−1, which is one of the most specific tetragonal features for bulk BaTiO3. In the present study, local stabilization of the tetragonal phase in ultra‐fine grains was experimentally demonstrated from comparison between the Raman spectroscopic results for powders and ceramics prepared through microemulsion‐mediated synthesis. Rather long phonon mean free paths can exist even in such ultra‐fine grains, but the phonon characteristics originating from various grains are diffused mainly because of the effect of internal stress. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

The crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 ? x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 ? x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskite structure. This effect almost vanished in the (1 ? x)BaTiO3 + xCo2O3 samples with nominal Co content higher than ~1 wt.%, in which precipitation of parasitic Co-containing phases CoO and Co2TiO4 has been observed. Based on the results, the solubility limit of Co in Ti sub-lattice in the (1 ? x)BaTiO3 + xCo2O3 series is estimated as x = 0.75 wt.%.  相似文献   

4.
张奇伟  翟继卫  岳振星 《物理学报》2013,62(23):237702-237702
采用传统的固相反应烧结方法制 备BaxSr1-xTiO3(0.40≤ x ≤0.70)陶瓷,借助于Raman散射光谱,研究了陶瓷样品在不同原位电场作用下Raman振动模式的变化,观察到居里温度附近显著的电场诱导的四方–立方相之间的转变. 结果表明A1(TO3)和E(TO4)两种振动模式与晶体的结构存在密切的联系,这两种模式源于O-Ti-O沿晶格中c轴的方向和ab面内的振动. A1(TO3)/E(TO4)之间Raman峰的相对强度比,随外加场强的增加明显升高,顺电相逐渐转变为铁电相,晶格的畸变越来越明显,其宏观性能上表现为介电常数的降低,可调率的增加. 同时对居里温度附近电场诱导的结构相变对顺电相下介电非线性的贡献进行了探讨. 关键词: 钛酸锶钡 Raman散射光谱 结构相变  相似文献   

5.
The effects of near‐IR (NIR) laser power over the Raman spectra of poly(aniline) emeraldine salt (PANI‐ES) and base (PANI‐EB) were investigated. The reasons for the existence of several bands from 1324 to 1500 cm−1 in the Raman spectra of poly(aniline) obtained at NIR region were also studied. The bands from 1324 to 1375 cm−1 were associated to νC N of polarons with different conjugation lengths and the bands from 1450 to 1500 cm−1 in Raman spectra of PANI emeraldine and pernigraniline base forms were correlated to νCN modes associated with quinoid units having different conjugation lengths. The increase of laser power at 1064.0 nm causes the deprotonation of PANI‐ES and the formation of cross‐linking segments having phenazine and/or oxazine rings. For PANI‐EB only a small spectral change is observed when the laser power is increased, owing to the low absorption of this form in the NIR region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Erbium (Er) doped GaN has been studied extensively for optoelectronic applications, yet its defect physics is still not well understood. In this work, we report a first‐principles hybrid density functional study of the structure, energetics, and thermodynamic transition levels of Er‐related defect complexes in GaN. We discover for the first time that ErGa–CN–VN, a defect complex of Er, a C impurity, and an N vacancy, and ErGa–ON–VN, a complex of Er, an O impurity, and an N vacancy, form defect levels at 0.18 eV and 0.46 eV below the conduction band, respectively. Together with ErGa–VN, a complex of Er and an N vacancy which has recently been found to produce a donor level at 0.61 eV, these defect complexes provide explanation for the Er‐related defect levels observed in experiments. The role of these defects in optical excitation of the luminescent Er center is also discussed.  相似文献   

7.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

BaTiO3+0.1wt.%Eu2O3 ceramics were prepared by a solid-state reaction method. The dielectric behavior of these ceramics as a function of uniaxial pressure has been systematically studied. The external stress showed obvious effects on these properties. An increase of the Curie point (Tc) and decrease of the Curie–Weiss temperature (T0) was observed with increasing pressure, resulting in an increase in the first-order nature of the phase transformation (TcT0 increases). Broadening and flattening of the permittivity versus temperature curves near their maximum was found. The pressure behavior of thermal hysteresis and the ??/?T vs. T plot suggests that the phase transition changes to second-order type with increasing pressure. Furthermore, the Curie–Weiss constant obtained from a modified Curie–Weiss law strongly decreases with increasing pressure, suggesting that the mechanism of phase transition is going to order–disorder type.  相似文献   

9.
A biochemical characterization of pathologies in biological tissue can be provided by Raman spectroscopy. Often, the raw spectrum is severely affected by fluorescence interference. We report and compare various spectra‐processing approaches required for the purification of Raman spectra from heavily fluorescence‐interfered raw spectra according to the shifted‐excitation Raman difference spectroscopy method. These approaches cover the entire spectra‐processing chain from the raw spectra to the purified Raman spectra. In detail, we compared (1) area normalization versus z‐score normalization, (2) direct reconstruction of the difference spectra versus reconstruction of zero‐centered difference spectra and (3) collective baseline correction of the reconstructed spectra versus piecewise baseline correction of the reconstructed spectra and, finally, (4) analyzed the influence of the shift of the excitation wavelength on the quality of the reconstructed spectra. Statistical analysis of the spectra showed that – in our experiments – the best results were obtained for the z‐score normalization before subtraction of the normalized spectra, followed by zero‐centering of the difference spectra before reconstruction and a piecewise baseline correction of the pure Raman spectra. With our equipment, a wavelength shift from 784 to 785 nm provided reconstructed spectra of best quality. The analyzed specimens were different tissue types of pigs, tissue from the oral cavity of humans and a model solution of dye dissolved in ethanol. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

10.
Ni‐doped SnO2 nanoparticles, promising for gas‐sensing applications, have been synthesized by a polymer precursor method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile‐type phase (tetragonal SnO2) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room‐temperature Raman spectra of Ni‐doped SnO2 nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A1g mode with the Ni content, a solubility limit at ∼2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above ∼2 mol% Ni, the redshift of A1g mode suggests that the surface segregation of Ni ions takes place. Disorder‐activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid‐solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A comparative, temperature‐dependent (80–500 K at 5 K intervals), micro‐Raman spectroscopic study of 300 and 50 nm diameter ceramic BaTiO3 nanoparticles was carried out with the purpose of elucidating the nanoparticle size effect on the temperature dependence of the polar and non‐polar phonons. A method for calibrating Raman intensities, along with an iterative spectral fitting algorithm, is proposed for concurrent Raman band position and intensity analysis, increasing the analytical abilities of single temperature point Raman spectroscopy. The 300 nm particles exhibit all three phase transitions, whereas the 50 nm particles do not show evidence of these phase transitions in the same temperature range. The Curie temperature appears to be a phonon converging point, irrespective of the phonon symmetry. An attempt was made to qualitatively relate the temperature‐dependent Raman spectra to complimentary non‐spectroscopic methods, such as heat capacity and X‐ray diffraction studies. The study proves that the temperature‐dependent behavior of the polar phonon, 265 cm−1, can be utilized as a sensitive phase transition probe. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we have performed Raman scattering measurements in Ba2BiSbO6 ceramics in the temperature range from 10 to 573 K. The Raman spectra were examined using group theory to analyze the decomposition of the reducible representation of the vibrational modes and with a virtual octahedral model. At room temperature, five modes were observed. At low temperatures, the spectra subtly showed the rhombohedral–monoclinic phase transition, which was identified by changes in the Raman intensity of the bending and symmetrical stretching SbO6 octahedral modes. The cubic–rhombohedral phase transition was not clearly evident in the high‐temperature Raman data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We present X‐ray diffraction and Raman spectroscopy studies of Ni‐doped ZnO (Zn1−xNixO, x = 0.0, 0.03, 0.06, and 0.10) ceramics prepared by solid‐state reaction technique. The presence of the secondary phase along with the wurtzite phase is observed in Ni‐doped ZnO samples. The E2(low) optical phonon mode is seen to be shifted to a lower wavenumber with Ni incorporation in ZnO and is explained on the basis of force‐constant variation of ZnO bond with Ni incorporation. A zone boundary phonon is observed in Ni‐doped samples at ∼130 cm−1 which is normally forbidden in the first‐order Raman scattering of ZnO. Antiferromagnetic ordering between Ni atoms via spin‐orbit mechanism at low temperatures (100 K) is held responsible for the observed zone boundary phonon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
15.
This work reports the temperature‐dependent Raman scattering study of mutiferroic BiFeO3 (BFO) bulk ceramics in a wide temperature range of 93–843 K. The polycrystalline samples are sintered at four different temperatures and characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), vibrating sample magnetometry, differential scanning calorimetry (DSC), and optical microscopy. The microstructure shows remarkable changes in terms of grain size and domain pattern as the sintering temperature increases. The DSC curves show prominent exothermic peaks at 645 K, the antiferromagnetic–paramagnetic phase transition temperature. The Raman spectra of all the four specimens reveal strong anomalies in the vicinity of the Neel temperature, which can be attributed to the multiferroic nature of BFO. The Raman scattering studies also reveal considerable spectral changes at a temperature range of 140–200 K in all the specimens, which can be inferred to a further spin–reorientation transition exhibited in BFO at a cryogenic temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports a systematic study of the composition and the temperature‐dependent‐Raman spectra of Zr4+‐rich BaZrxTi1−xO3 (BZT) ceramic compositions (0.50⩽x⩽1.00). On the basis of the dielectric behavior of Zr rich BZT ceramics, the observed relaxor behavior has been hypothesized as a result of increasing long‐range interactions of nanosized, Ti4+‐rich polar regions in a Zr4+‐rich nonpolar matrix. Beyond an optimum concentration of BaTiO3 (BT) in the nonpolar matrix of BaZrO3 (x⩽0.75), a critical size and density of the polar regions is reached when the polar clusters start showing the relaxor like behavior, which finally show classical relaxor behavior for compositions with x = 0.5 and 0.6. This hypothesis is strongly supported from the Raman data on Zr‐rich BZT presented in this paper. Well‐defined BT Raman spectra for 5% BT in BZT composition were recorded, which followed completely up to the 50% Ti addition in the BZT samples. The temperature‐dependent Raman spectra collected on the BZT ceramics far beyond the dielectric transition temperatures supported the existence of the nano‐polar BT regions, like in typical relaxor samples. The full width at half‐maximum (FWHM), integrated intensity of the peaks in the Raman spectra has been analyzed to further support the conclusions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Two strong bands centered at 446 and 607 cm−1 have been observed in the FT‐Raman spectrum of almandine [Fe3Al2(SiO4)3] excited with 1064 nm, which were completely absent in the corresponding dispersive Raman spectra obtained using 488, 514.5 and 532 nm excitation. Furthermore, the mentioned strong bands have not been registered in the anti‐Stokes side of the FT‐Raman spectrum, and were therefore assigned to laser‐induced fluorescence bands. Their appearance is related to the presence of rare‐earth element traces as impurities in the almandine sample. Additionally, the FT‐Raman (and dispersive Raman) spectrum of the isomorphous spessartine [Mn3Al2(SiO4)3] mineral has been introduced, which did not show the presence of these fluorescence emission bands. The purity of the minerals was confirmed by study of their powder X‐ray diffraction (PXRD) patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work, multiphase polycrystalline BTO nanorods were synthesized using template‐assisted sol–gel deposition and their structural evolution was studied using thermo Raman spectroscopy, X‐ray diffractometry and high‐resolution transmission electron microscopy (HRTEM). In the BTO nanorods, the tetragonal phase was the dominant one, while both Raman and HRTEM indicated a coexistence with the high‐temperature hexagonal polymorph. This phase was stable across the whole of the investigated temperature range (from −95 °C to 200 °C). The investigated nanorods underwent a diffuse phase transition from tetragonal to cubic with respect to the temperature, whereas the final phase‐transition temperature was shifted to higher values compared to that expected for BTO. The low‐temperature orthorhombic‐to‐rhombohedral phase transition was also shifted to higher temperatures. These differences could be explained by the strain induced by the presence of hexagonal nanolamellas intergrown within the tetragonal nanocrystals. This result indicates that the temperature of the ferroelectric phase transition in polycrystalline BTO nanorods can be manipulated by introducing a stable hexagonal phase. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Time‐resolved Raman spectroscopy, spatially offset Raman spectroscopy and time‐resolved spatially offset Raman spectroscopy (TR‐SORS) have proven their capability for the non‐invasive profiling of deep layers of a sample. Recent studies have indicated that TR‐SORS exhibits an enhanced selectivity toward the deep layers of a sample. However, the enhanced depth profiling efficiency of TR‐SORS, in comparison with time‐resolved Raman spectroscopy and spatially offset Raman spectroscopy, is yet to be assessed and explained in accordance to the synergistic effects of spatial and temporal resolutions. This study provides a critical investigation of the depth profiling efficiency of the three deep Raman techniques. The study compares the efficiency of the various deep Raman spectroscopy techniques for the stand‐off detection of explosive precursors hidden in highly fluorescing packaging. The study explains for the first time the synergistic effects of spatial and temporal resolutions in the deep Raman techniques and their impact on the acquired spectral data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号