首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work reports the temperature‐dependent Raman scattering study of mutiferroic BiFeO3 (BFO) bulk ceramics in a wide temperature range of 93–843 K. The polycrystalline samples are sintered at four different temperatures and characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), vibrating sample magnetometry, differential scanning calorimetry (DSC), and optical microscopy. The microstructure shows remarkable changes in terms of grain size and domain pattern as the sintering temperature increases. The DSC curves show prominent exothermic peaks at 645 K, the antiferromagnetic–paramagnetic phase transition temperature. The Raman spectra of all the four specimens reveal strong anomalies in the vicinity of the Neel temperature, which can be attributed to the multiferroic nature of BFO. The Raman scattering studies also reveal considerable spectral changes at a temperature range of 140–200 K in all the specimens, which can be inferred to a further spin–reorientation transition exhibited in BFO at a cryogenic temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

3.
Anomalous low temperature behaviors in cuprous oxide (Cu2O) film grown on quartz substrate have been investigated by temperature‐dependent Raman and transmittance spectra. The longitudinal optical components of two Γ15‐ phonon modes become sharper and more intense at a low temperature. It can be found that the highest‐order electronic transition located at 6.4 eV exhibits a minimum transmittance near 200 K. Correspondingly, the variations from phonon intensity ratios reveal obvious anomalies with the decreasing temperature, indicating the existence of strong electron–phonon coupling mediated by Fröhlich interaction in the Cu2O films below the temperature of 200 K. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Polycrystalline BiFeO3 (BFO) thin films were successfully grown on Pt/Ti/SiO2/Si(100) and SrTiO3 (STO) (100) substrates using the chemical solution deposition (CSD) technique. X‐ray diffraction (XRD) patterns indicate the polycrystalline nature of the films with rhombohedrally distorted perovskite crystal structure. Differential thermal analysis (DTA) was performed on the sol–gel‐derived powder to countercheck the crystal structure, ferroelectric (FE) to paraelectric (PE) phase transition, and melting point of bismuth ferrite. We observed a significant exothermic peak at 840 °C in DTA graphs, which corresponds to an FE–PE phase transition. Raman spectroscopy studies were carried out on BFO thin films prepared on both the substrates over a wide range of temperature. The room‐temperature unpolarized Raman spectra of BFO thin films indicate the presence of 13 Raman active modes, of which five strong modes were in the low‐wavenumber region and eight weak Raman active modes above 250 cm−1. We observed slight shifts in the lower wavenumbers towards lower values with increase in temperature. The temperature‐dependent Raman spectra indicate a complete disappearance of all Raman active modes at 840 °C corresponding to the FE–PE phase transitions. There is no evidence of soft mode phonons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The spin correlations and excitations of the Sr2YRuO6 double perovskite are investigated by means of Raman scattering, complemented by synchrotron X‐ray diffraction measurements. Anomalous softening of a breathing mode of the oxygen octahedra is observed below ~200 K, much above the long‐range antiferromagnetic ordering temperature, TN1 = 32 K, due to a spin‐phonon coupling mechanism in the presence of magnetic correlations. A diffusive Raman signal is also observed, possibly associated with spin excitations within magnetically correlated regions. Our results point to a characteristic energy and temperature scale of ~25 meV/200 K below which unusual behavior associated with magnetic correlations is observed in this material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of La and Nd co‐substitution on structure, electric and magnetic properties of epitaxial thin films of BiFeO3 (BFO) was examined. We demonstrate structural phase transition in co‐doped La and Nd BFO thin films using Raman spectroscopy. Based on group theoretical analysis of the number and symmetry of Raman lines, we provide strong experimental evidence that the structure has been changed from rhombohedral to monoclinic due to co‐doping in BFO. The change in structure was also reflected in morphology of these films. Room temperature magnetic hysteresis curves showed that doped films exhibit enhanced ferromagnetic properties with remnant magnetization of ~10 emu/cm3 and coercive field of 1.2 kOe. The enhanced magnetic properties highlight the potential applications of doped BLNFO thin film for smart devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A displacive, 2nd order structural phase transition at T s = 395 K from space group I 2 m below T s to I 4/m c m above T s has been discovered in the two-dimensional spin dimer compound SrCu2(BO3)2. The temperature evolution of the structure in both phases has been studied by X-ray diffraction and Raman scattering, supplemented by differential scanning calorimetry and SQUID magnetometry. The implications of this transition and of the observed phonon anomalies in Raman scattering for spin-phonon and interlayer coupling in this quantum spin system will be discussed. Received 24 July 2000 and Received in final form 2 November 2000  相似文献   

9.
A series of Nd1?xCaxMnO3 (x=0.2, 0.33, 0.4, and 0.5) manganites was prepared by sol–gel route by sintering at 1300 °C, mainly to understand the correlation between electron, spin, and phonon couplings. The internal friction and longitudinal modulus along with electrical and magnetic properties have been measured. All the samples are found to exhibit anomalies at TC, TN, and TCO transition temperatures. The anomalies in longitudinal modulus and the internal friction peak at TCO are attributed to Jahn–Teller effect. A strong correlation between the temperature dependent elastic, anelastic, resistivity, and ac susceptibility properties has been observed and an effort has been made to explain the observed anomalous behavior by a qualitative model.  相似文献   

10.
Crystalline solid solution of BiHoXFe1+XO3 (X=0, 0.05, 0.1, and 0.15) ceramics have been successfully synthesized by slow step sintering schedule. At particular value of X (X=0.1) the sample showed good crystallinity with almost impurity free phases. It was observed that at particular concentration of X (X=0.1), the sample showed enhanced MH loop by Ho doping in presence of excess Fe. Furthermore, the MH loop gets reduced with the increase in value of X (X=0.15). Compared to the pure BFO, the dielectric properties for X=0.1 composition are improved due to the decreased oxygen vacancies by the stabilized oxygen octahedron. Raman spectra over the frequency range of 100–1500 cm?1 have been systematically investigated with different concentrations of X. Besides the changes of the peak position and the line width of the all modes, the prominent frequency shift, the line broadening and variation of the intensity for the two-phonon mode between 1270 and 1280 cm?1 were observed with increase in value of X. All these results indicate the existence of strong spin–phonon coupling in Ho doped Fe rich BFO.  相似文献   

11.
The spin flip-flop transition rate is calculated for the case of spectral spin diffusion within a system of dipolarly coupled spins in a solid where the lattice vibrations are present. Long-wavelength acoustic phonons time-modulate the interspin distance rij and enhance the transition rate via the change of the 1/r3ij term in the coupling dipolar Hamiltonian. The phonon-assisted spin diffusion rate is calculated by the golden rule in the Debye approximation of the phonon density of states. The coupling of the spins to the phonons introduces temperature dependence into the transition rate, in contrast to the spin diffusion in a rigid lattice, where the rate is temperature-independent. The direct (one-phonon absorption or emission) processes introduce a linear temperature dependence into the rate at temperatures not too close to T = 0. Two-phonon processes introduce a more complicated temperature dependence that again becomes simple analytical for temperatures higher than the Debye temperature, where the rate is proportional to T2, and in the limit T → 0, where the rate varies as T7. Raman processes (one-phonon absorption and another phonon emission) dominate by far the phonon-assisted spin flip-flop transitions.  相似文献   

12.
Quasielastic scattering from spin fluctuations has been observed in UPt3 by Raman spectroscopy. The experiments for wave vectors q≈0 show a nearly temperature independent linewidth for 5 K ⩽ T ⩽ 300 K Complementary to neutron scattering results this establishes the q independence of the spin relaxation rate, indicating the localized nature of the spin fluctuations. A Raman-active phonon near 79 cm-1 (10 meV) shows a drastic increase in line-width with decreasing temperature, demonstrating strong electron-phonon coupling.  相似文献   

13.
Room temperature multiferroic properties of BiFeO3 (BFO), Bi0.9La0.1FeO3 ((La)BFO) and Bi0.9La0.075Ce0.025FeO3 ((La,Ce)BFO) nanoparticles have been reported in this paper. XRD (X-ray diffraction) analyses of the nanoparticles show a decrease in the lattice constants and cell volume with the substitution of La and Ce. It is evident from the SEM (scanning electron microscope) micrographs that the (La,Ce) co-doped sample possesses dense microstructure made of smaller particles. Raman study accounts for the weakening of the strong hybridization between Bi-O by the substitution of La and Ce ions. This is also accompanied by an increase in the remanent magnetization, dielectric constant, and ferroelectric polarization. BFO nanoparticles show exchange bias effect under an applied magnetic field while the (La)BFO and (La,Ce)BFO samples show no trace of such effect. Ac-conductivity of (La,Ce) co-doped sample is observed to be several orders lesser in magnitude than bulk BFO ceramics. These results are interpreted by means of the subtle change in the structure, suppression of the spin cycloid and reduction of oxygen vacancies in the doped samples.  相似文献   

14.
A soft chemical coprecipitation method has been proposed for synthesis of nano-sized multiferroic BiFeO3 (BFO) powders. The X-ray diffraction pattern confirms the perovskite structure of BFO and Rietveld refinement reveals the existence of rhombohedral R3c symmetry. Crystallite size and strain value are studied from Williamson–Hall (W–H) analysis. The transmission electron microscope (TEM) image shows that the particle size of BFO powders lies between 50–100 nm. 4A1 and 7E Raman modes have been observed in the range 100–650 cm?1 and a prominent band centered around 1150–1450 cm?1 have also been observed corresponding to the two-phonon scattering. Differential Thermal Analysis (DTA) shows the existence of two prominent peaks at 330 °C and 837 °C corresponding to the magnetic and ferroelectric ordering, respectively. From the temperature dependent dielectric studies, an anomaly in the dielectric constant is observed at the vicinity of Neel temperature (T N ) indicating a magnetic ordering. Also, BFO shows antiferromagnetic behavior measured from the magnetic studies.  相似文献   

15.
The Korringa–Kohn–Rostoker method with the coherent potental approximation (KKR‐CPA) is applied to study the first superconducting high entropy alloy (HEA) Ta34Nb33Hf8Zr14Ti11 (discovered in 2014 with Tc = 7.3 K), focusing on estimations of the electron–phonon coupling constant λ. The electronic part of λ has been calculated using the rigid muffin‐tin approximation (RMTA), while the phonon part has been approximated using average atomic mass and experimental Debye temperature. The estimated λ = 1.16 is close to the value determined from specific heat measurements, λ = 0.98, and suggests rather strong electron–phonon coupling in this material. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
In this paper, in situ Raman spectra of Ta2AlC are measured in the temperature range of 80–500 K at ambient pressure. The frequencies of the Raman modes decrease with increasing temperature, which have been explained by the anharmonic and thermal expansion effects. The line‐width of E2g (ω3) mode increases at elevated temperatures, which is found to be due to the anharmonic phonon–phonon scatterings. On the other hand, the line‐widths of E2g (ω1) and A1g (ω4) modes decrease continuously with increasing temperature, which is explained by the electron–phonon couplings of these two phonon modes with the Ta 5d electrons. The electron–phonon coupling strengths are obtained both in experiments and density functional calculations. Finally, Ta2AlC is predicted to be a new superconductive MAX phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Multiphonon resonant Raman scattering in N‐doped ZnO films was studied, and an enhancement of the resonant Raman scattering process as well as longitudinal optical (LO) phonon overtones up to the sixth order were observed at room temperature. The resonant Raman scattering intensity of the 1LO phonon in N‐doped ZnO appears three times as strong as that of undoped ZnO, which mainly arises from the defect‐induced Raman scattering caused by N‐doping. The nature of the 1LO phonon at 578 cm−1 is interpreted as a quasimode with mixed A1 and E1 symmetry because of the defects formed in the ZnO lattice. In addition, the previously neglected impurity‐induced two‐LO‐phonon scattering process was clearly observed in N‐doped ZnO. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The nature of the double-exchange (DE) interaction in lanthanum manganites is studied through chemical substitutions, Cs for La, and high-pressure measurements. Static and high-frequency magnetic measurements and high-pressure electrical transport studies were carried out on bulk polycrystalline and radio-frequency sputtered thin films of La0.7-xCsxCa0.3MnO3 for x=0-0.1. The samples are found to be cubic. Curie temperature Tc measurements provide evidence for bond-length-related weakening of DE as x is increased from 0 to 0.03. For higher x, the bond-angle-related changes lead to an increase in the strength of DE. High-pressure mangetoresistance data indicate both bond length and bond-angle-related increase of 10–20 K/GPa in Tc with pressure, with the largest increase measured for x=0.03. The rate of increase in the Curie temperature with pressure decreases with increasing Tc. Anomalies are observed in the magnetic parameters for x=0.03. The Cs-concentration dependence of the low-temperature saturation magnetization shows a minimum close to x=0.03. Ferromagnetic resonance studies at x-band reveal a 5% decrease in the g-value for x=0.03 relative to the end members (x=0 and 0.1). The low-field magnetostriction for x=0.03 indicates a relatively strong electron–phonon spin coupling compared to neighboring compositions. Received: 15 May 2000 / Accepted: 24 July 2000 / Published online: 9 November 2000  相似文献   

19.
Raman scattering on single crystals of Eu3S4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T<186 K). Above the Curie temperature Tc=3.8 K the scattering is dominated by a spin-disorder induced one-phonon density of states allowing for the observation of the zone boundary phonon breathing mode of the S2?ions. This mode does not show any anomaly near the charge order -disorder phase transition Tt=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu2+→Eu3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder.  相似文献   

20.
First‐order and multiphonon Raman active excitations are studied in YbVO3 as a function of temperature in the orthorhombic and monoclinic phases. Below T ≃ 170 K, a G‐type orbital ordering with a concomitant monoclinic transition occurs. They enhance the phonon polarizabilities, allowing the resolution of room‐temperature bands, and activate new excitations around 700 cm−1. Below T ∼ 65 K, the 700 cm−1 excitations disappear, indicating a C‐type orbital ordering and a return to the orthorhombic structure. The observed phonon combinations around 1400 cm−1 with a dominant Jahn‐Teller vibration at ∼690 cm−1 reflect a possible orbiton‐phonon coupling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号