首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linear isothermal dynamic model for a porous medium saturated by a Newtonian fluid is developed in the paper. In contrast to the mixture theory, the assumption of phase separation is avoided by introducing a single constitutive energy function for the porous medium. An important advantage of the proposed model is it can account for the couplings between the solid skeleton and the pore fluid. The mass and momentum balance equations are obtained according to the generalized mixture theory. Constitutive relations for the stress, the pore pressure are derived from the total free energy accounting for inter-phase interaction. In order to describe the momentum interaction between the fluid and the solid, a frequency independent Biot-type drag force model is introduced. A temporal variable porosity model with relaxation accounting for additional attenuation is introduced for the first time. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be estimated from directly measurable phenomenological parameters. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for the two P waves and one S wave are calculated. The influences of the porosity relaxation coefficient on the velocities and attenuation coefficients of the three waves of the porous medium are discussed in a numerical example.  相似文献   

2.
This paper analyses the material instability of fully saturated multiphase porous media. On account of the fact that anisotropic mechanical behaviours are widely observed in saturated and partially saturated geomaterials, the anisotropic constitutive model developed by Rudnicki for geomaterials is used to model the anisotropic mechanical behaviour of the solid skeleton of saturated porous geomaterials in axisymmetric compression test. The inertial coupling effect between solid skeleton and pore fluid is also taken into account in dynamic cases. Conditions for static instability (strain localisation) and dynamic instability (stationary discontinuity and flutter instability) of fully saturated porous media are derived. The critical modulus, shear band angle for strain localisation, and the bound within which flutter instability may occur are given in explicit forms. The effects of material parameters on material instability are investigated in detail by numerical computations.  相似文献   

3.
A linear isothermal dynamic model for a porous medium saturated by two immiscible fluids is developed in the paper. In contrast to the mixture theory, phase separation is avoided by introducing one energy for the porous medium. It is an important advantage of the model based on one energy approach that it can account for the couplings between the phases. The volume fraction of each phase is characterized by the porosity of the porous medium and the saturation of the wetting phase. The mass and momentum balance equations are constructed according to the generalized mixture theory. Constitutive relations for the stress, pore pressure are derived from the free energy function. A capillary pressure relaxation model characterizing one attenuation mechanism of the two-fluid saturated porous medium is introduced under the constraint of the entropy inequality. In order to describe the momentum interaction between the fluids and the solid, a frequency independent drag force model is introduced. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be calculated by the phenomenological parameters, which are measurable. The equations of motion in the frequency domain are obtained in terms of the Fourier transformation. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for three P waves and one S wave are calculated. The influences of the capillary pressure relaxation coefficient and the saturation of the wetting phase on the velocities and attenuation coefficients for the four wave modes are discussed in the numerical examples.  相似文献   

4.
The present work extends the investigation which has been initiated in Parts I and II of this study (Martin, C.L., Favier, D., Suéry, M., 1997a. Viscoplastic behaviour of porous metallic materials saturated with liquid, part I: constitutive equations. Int. J. Plasticity 13, 215–235; Martin, C.L., Favier, D. Suéry, M., 1997b. Viscoplastic behaviour of porous metallic materials saturated with liquid, Part II: experimental identification on a Sn–Pb model alloy. Int. J. Plasticity 13, 237–259) to the tensile behaviour of viscoplastic porous metallic materials saturated with liquid. Simple tensile experiments together with ring extension tests are carried out to study the fracture behaviour of this class of material. Ring tests consist in applying an internal pressure on a specimen with a ring shape. A Sn–Pb model alloy with a dendritic microstructure is used to characterise the behaviour of the material up to fracture. The liquid presence is accounted for to derive the intrinsic behaviour of the solid skeleton. The collected data are then incorporated in the model framework presented in Part I. A simple modification of the model allows the treatment of the strong asymmetry between tension and compression which is exhibited by these materials.  相似文献   

5.
The behaviour of the soil under a dynamically loaded pile toe is studied. The soil is modelled as a fluid saturated porous continuum. The constitutive behaviour of the solid skeleton is described by the elasto-plastic model of Drücker-Prager. The wave propagation is simulated with a dynamical finite-element program.A two-phase model of soil gives useful information about effective stress and pore pressure in the soil. In saturated soil the main wave under the pile toe propagates more downards than in dry soil, due to the higher compressional stiffness in saturated soil. The plastic zone under the pile toe propagates with the velocity of the fast compressional wave. The pore fluid influences the plasticity strongly and can be expected to affect pile driving too.The distribution of effective stress and pore pressure under the pile toe depends on the permeability of the soil and cannot be calculated uniquely from a single-phase calculation. Therefore, a nonlinear soil cannot be modelled correctly as a conventional single-phase material.  相似文献   

6.
非饱和多孔介质有限元分析的基本控制方程与变分原理   总被引:2,自引:1,他引:2  
张洪武 《力学季刊》2002,23(1):50-58
本文在对问题研究现状进行阐述的基础上较系统地给出了骨架可变形非饱和多孔介质的全耦合分析模型,模型中考虑了孔隙气体,水(油)流动对介质力学性能的影响,多孔介质的饱和度,渗透系数与毛吸压力的关系,由实验给出,所导出的控制方程以固体骨架的位移与孔隙流体压力为基本未知量,由于问题的非自共轭特征,文中构造了非饱和介质动力问题的参数变分形式,并在此基础上给出有限元离散方程。  相似文献   

7.
The peculiarity of linear and nonlinear wave propagation in porous media saturated with liquid or gas has been investigated by the methods of multiphase media mechanics. It has been shown that for the analysis and interpretation of experimental data, it is expedient to build models taking into account the nonstationary powers of interaction between the solid and liquid phases and the viscouselastic behaviour of the porous media skeleton. Inertia and inertia-viscous powers principally influence wave attentuation in porous media. Two interphase mechanisms of momentum transfer (two stress tensors — in the solid phase and liquid) lead to two types of waves. Attenuation is determined not only by interphase friction, but also by dissipation resulting from intergrain friction in the solid phase, the influence of which multiplexly exceeds the liquid viscosity influence. The real decrement of attenuation may exceed the sphere restricted by the limiting curves corresponding to the frozen and equilibrium schemes of intergrain deformation. The attenuation of momentum perturbation has been studied. The method of discrete Fourier transform has been used. The analysis of experimental data contained in the literature and their comparison with the results of calculations has been carried out.  相似文献   

8.
川藏公路地质环境与整治改建方案的思考   总被引:3,自引:1,他引:3  
刘凯欣  刘颖 《力学学报》2003,35(1):100-104
川藏公路由于地质环境复杂、建设标准低、后遗病害多,抗灾能力差,泥石流、滑坡、山崩、雪害、水毁等自然灾害频繁发生,公路阻车断道严重。国家投入巨资进行整治改建,并取得了明显的效果,但由于自然环境特殊、影响因素复杂,许多特大型、大型工程地质病害问题还没有可行、可靠的解决方案。本文通过分析川藏公路沿线的地质环境和灾害特点,总结历年整治改建和经验的教训,提出川藏公路建设的途径、可能达到的目标和应采用的原则。  相似文献   

9.
一维流体饱和粘弹性多孔介质层的动力响应   总被引:3,自引:1,他引:2  
杨骁  张燕 《力学季刊》2005,26(1):44-52
本文研究了不可压流体饱和粘弹性多孔介质层的一维动力响应问题。基于粘弹性理论和多孔介质理论,在流相和固相微观不可压、固相骨架服从粘弹性积分型本构关系和小变形的假定下,建立了不可压流体饱和粘弹性多孔介质层一维动力响应的数学模型,利用Laplace变换,求得了原初边值问题在变换空间中的解析解,并利用Laplace逆变换的Crump数值反演方法,得到原动力响应问题的数值解。数值研究了饱和标准线性粘弹性多孔介质层的动力响应,分析了固相位移、渗流速度、孔隙压力及固相有效应力等的响应特征。结果表明,与不可压流体饱和弹性多孔介质相同,不可压流体饱和粘弹性多孔介质中亦只存在一个纵波,并且固相骨架的粘性对动力行为有显著的影响。  相似文献   

10.
It is known that a high degree of anisotropy in the constitutive behaviour of a solid may result in the loss of hyperbolicity of the dynamic equations in the form of either complex-conjugate or purely imaginary characteristic wave speeds (flutter ill-posedness and shear band formation, respectively). In the present paper we investigate the characteristic wave speeds in the dynamic problem for a transversely isotropic fluid-saturated porous solid. Three cases are considered: a dry solid and a saturated solid under locally undrained and drained conditions. It is shown that, for given constitutive parameters of the solid skeleton, the dynamic problem for a drained solid may become ill-posed due to the flutter-type loss of hyperbolicity, while the dynamic equations for a dry and an undrained solids remain hyperbolic. For a given solid skeleton, the characteristic wave speeds are strongly influenced by the pore fluid compressibility which, in turn, is extremely sensitive to the presence of a small amount of free gas.  相似文献   

11.
As the temperature of a saturated porous medium drops, the water in the pores starts to freeze. Since the temperature at which the phase change takes place is dependent on the pore size, the permeability of the medium changes continuously. Simultaneously, due to the expansion of water on freezing, it is forced to migrate through the pore body thus inducing stresses in material matrix. The stresses developed and the consequent frost damage are therefore dependent on the change in the permeability characteristics of the medium on freezing. This paper deals with the numerical prediction of permeability characteristics of porous cemented media saturated with water undergoing progressive freezing.A bond percolation model is used to generate the pore structure according to an assumed poresize distribution. Permeability of the medium at various temperatures is computed by solving the network problem. The computed results are compared with other analytical and experimental results. The proposed model predicts a threshold temperature below which permeability drops to zero. This phenomenon is crucial in developing a deeper understanding of the mechanism of frost damage to cemented porous materials such as bricks, stone, concrete, etc.  相似文献   

12.
An efficient meshless technique for simulating wave motions in saturated porous media is introduced in this paper. Using radial point interpolation method (RPIM) and considering the precision requirement in wave motion simulation, a lumped-mass RPIM for saturated porous media with clear physical concepts is derived. Combining explicit time integration with the lumped-mass RPIM leads to a decoupled radial point interpolation method (decoupled RPIM) for dynamic analysis without solving algebra equation set. A two-dimensional problem is calculated by the proposed decoupled RPIM, the ordinary RPIM, and the finite element method (FEM). The accuracy and efficiency of these methods are compared, which demonstrate that the proposed decoupled RPIM has comparable accuracy with the ordinary RPIM and the finite element method, but has high efficiency in simulating wave motions in saturated porous media.  相似文献   

13.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

14.
基于饱和多孔介质理论,在固相和液相微观不可压,固相骨架小变形且满足线性粘弹性积分型本构关系的假定下,建立了流体饱和粘弹性多孔介质动力响应的若干Gurtin型变分原理,包括Hu-Washizu变分原理.利用所建立的变分原理,导出了流体饱和粘弹性多孔介质动力响应无网格数值模拟的离散控制方程,此方程是一个关于时间的对称微分方程组,便于分析计算.作为数值例子,研究了流体饱和粘弹性多孔柱体的一维动力响应,数值结果揭示了流体饱和粘弹性多孔柱体中波的传播特性以及固相粘性的影响.  相似文献   

15.
16.
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids.The propagation of three longitudinal waves is represented through three scalar potential functions.The lone transverse wave is presented by a vector potential function.The displacements of particles in different phases of the aggregate are defined in terms of these potential functions.It is shown that there exist three longitudinal waves and one transverse wave.The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated.For the presence of viscosity in pore-fluids,the waves refracted to the porous medium attenuate in the direction normal to the interface.The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a nonsingular system of linear algebraic equations.These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave.The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model.The conservation of the energy across the interface is verified.The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed.  相似文献   

17.
M. P. Levin 《Fluid Dynamics》1996,31(6):865-867
The problem of the propagation of pressure waves through compressible porous media saturated with a slightly compressible fluid is considered. By using Darcy's law the problem is reduced to a mixed initial-boundary value problem for an equation of the heat conduction type with a nonlinear term. The method of quasi-characteristics is used to solve this equation numerically. Solutions of the wave propagation problem for media with different permeability coefficients are presented. A solution of the inverse problem of determining the permeability coefficient using wave-pulse test data is constructed on the basis of a set of solutions of the direct problem.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 81–84, November–December, 1996.  相似文献   

18.
IntroductionThetransientphenomenaofdynamicproblemsandthemannerstotreatthemaregenerallyrelatedtothespectralcharacteristicsofexcitation .Onemayomitpropagatingwavesifrelativelylowerfrequenciesgoverntheresponsesintheproblemssuchasseismicresponsesandrespon…  相似文献   

19.
ONSET CONDITION OF STRAIN LOCALIZATION IN MATRIX OF SATURATED POROUS MEDIA   总被引:1,自引:0,他引:1  
Introduction Strainlocalizationofgeomaterialsisoneofmostpopularfailuretypesinnature,which canbeshowedaslandslidesandmudflowsinmountainousareasunderincessantorheavy raining,especiallythevegetationisseverelydamagedbywoodsharvest;pipingeffect,a typeoflocalfa…  相似文献   

20.
In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior in saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media are analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given. The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading. The project supported by the National Natural Science Foundation of China (19832010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号