首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constants of the reactions of the radicals OH? and Cl2 ?? with α-pinene determined by pulse radiolysis in aqueous solution are given. The reaction of Cl? with α-pinene has been studied by laser photolyis in CCl4 solution. Furthermore, the rate constants of the reactions of the formed organic radicals with oxygen as well as those of the deactivation of all radicals were determined.  相似文献   

2.
In the investigation of peroxyl radicals the pulse radiolysis technique can be used with some advantage to determine the rate of their unimolecular or bimolecular decay. If the identities of the products of the peroxyl radical reactions are known, pulse radiolysis often provides evidence for mechanistic details. The absorptions of the peroxyl radicals are neither very specific nor strong and optical detection is usually of little help. However, there are many peroxyl radical reactions which result in the formation of HO 2 . /H+O 2 . (pKa(HO 2 . )=4.7) or other acids. Thus in neutral and alkaline solutions such species can be monitored even quantitatively by the pulse conductometric method. Furthermore, O 2 . can be detected by its rapid reaction with tetranitromethane which yields the strongly absorbing nitroform anion. Since O 2 . is only a short-lived intermediate in neutral solutions, it can be distinguished from permanent acids which are often formed in peroxyl radical reactions. In alkaline solutions, where O 2 . is more stable, superoxide dismutase might be used with advantage to reduce its lifetime and to determine the yield of permanent acids. Some details of the fate of the peroxyl radicals derived from acetate, the -hydroxyethyl-peroxyl radicals, and the cyclopentylperoxyl radicals will be reviewed.  相似文献   

3.
Trichloromethylperoxyl radicals were produced by pulse radiolysis of air saturated solutions containing CCl4. The rate constants for the reaction of CCl3O2 radicals with zinc tetraphenylporphyrin (ZnTPP) were determined in various solvents. They were found to vary between 3 × 107 and 3 × 109 M?1 s?1. The changes in rate constants result from complexation of ZnTPP with the different solvents, but did not correspond to changes in redox potential of ZnTPP. The rate constants were found to depend on the strength of the axial complexation, indicating an inner sphere mechanism whereby the radical binds to the metal prior to electron transfer.  相似文献   

4.
Ab initio and Density Functional Theory (DFT) calculations were performed to determine the equilibrium geometries, charge distributions, spin density distributions, dipole moments, electron affinities (EAs), and C–O bond dissociation energies (BDEs) of CH2ClO2? CHCl2O2?, CCl3O2?, CF2ClO2?, CFCl2O2?, and CHFClO2? peroxyl radicals. The C–H BDEs of the parent methanes were calculated using the same levels of theories. Both MP2(full) and B3LYP methods, using the 6‐31G(d,p) basis set, were found to be capable of accurately predicting the geometries of peroxyl radicals. The B3LYP/6‐31G(d,p) method was found to be comparable to high ab initio levels in predicting C–O BDEs of studied peroxyl radicals and C–H BDEs of the parent alkanes. The progressive chlorine substitution of hydrogen atoms in methyl peroxyl radicals results in an increase (decrease) of the spin density on the terminal (inner) oxygen, a decrease in dipole moments, and an increase in electron affinities. The substitution of fluorine by chlorine in the series CF3O2? – CCl3O2? was found to lengthen (destabilize) the C–O bonds. Both C–O BDEs and EAs of peroxyl radicals (RO2?) were found to correlate well with Taft σ* substituent constants for the R groups. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
Absolute rate constants have been measured for the reactions of trichloromethylperoxyl radicals with cyclohexane, cyclohexene, and hexamethylbenzene. The CCl3O2 radicals were produced by pulse radiolysis of air-saturated CCl4 solutions containing various amounts of the hydrocarbons. The rate constants were determined by competition with the one-electron oxidation of metalloporphyrins, using the rate of formation of the metalloporphyrin radical cation absorption to monitor the reaction by kinetic spectrophotometry. The rate constants for hydrogen abstraction from cyclohexane, cyclohexene, and hexamethylbenzene were found to be 1 × 103, 1.0 × 105, and 7.5 × 104 M?1 s?1, respectively.  相似文献   

6.
Absolute rate constants for the one electron oxidation of guanine, guanosine, uric acid, xanthine, hypoxanthine, tyrosine, and thymine by various halogenated peroxyl radicals in aqueous solutions have been determined using the technique of pulse radiolysis. Roughly, linear correlations have been observed between the logarithm of these rate constants and Taft's inductive parameter (σ*) for the radicals. However, the rate constants for the radical CBr3O are slightly higher than those for CCl3O for most of these compounds. © John Wiley & Sons, Inc.  相似文献   

7.
Reactions of peroxyl radicals and peroxynitrite with o-vanillin (2-hydroxy 3-methoxy benzaldehyde), a positional isomer of the well-known dietary compound vanillin, were studied to understand the mechanisms of its free radical scavenging action. Trichloromethylperoxyl radicals (CCl3O 2 · ) were used as model peroxyl radicals and their reactions with o-vanillin were studied using nanosecond pulse radiolysis technique with absorption detection. The reaction produced a transient with a bimolecular rate constant of approx. 105 M−1s−1, having absorption in the 400–500 nm region with a maximum at 450 nm. This spectrum looked significantly different from that of phenoxyl radicals of o-vanillin produced by the one-electron oxidation by azide radicals. The spectra and decay kinetics suggest that peroxyl radical reacts with o-vanillin mainly by forming a radical adduct. Peroxynitrite reactions with o-vanillin at pH 6.8 were studied using a stopped-flow spectrophotometer. o-Vanillin reacts with peroxynitrite with a bimolecular rate constant of 3 × 103 M−1s−1. The reaction produced an intermediate having absorption in the wavelength region of 300–500 nm with a absorption maximum at 420 nm, that subsequently decayed in 20 s with a first-order decay constant of 0.09 s−1. The studies indicate that o-vanillin is a very efficient scavenger of peroxynitrite, but not a very good scavenger of peroxyl radical. The reactions take place through the aldehyde and the phenolic OH group and are significantly different from other phenolic compounds.  相似文献   

8.
The rate coefficient for the reaction of CCl3 radicals with ozone has been measured at 303 ± 2 K. The CCl3 radicals were generated by the pulsed laser photolysis of carbon tetrachloride at 193 nm. The time profile of CCl3 concentration was monitored with a photoionization mass spectrometer. Addition of the O3–O2 mixture to this system caused a decay of the CCl3 concentration because of the reactions of CCl3 + O3 → products (5) and CCl3 + O2 → products (4). The decay of signals from the CCl3 radical was measured in the presence and absence of ozone. In the absence of ozone, the O3–O2 mixture was passed through a heated quartz tube to convert the ozone to molecular oxygen. Since the rate coefficient for the reaction of CCl3 + O2 could be determined separately, the absolute rate coefficient for reaction ( 5 ) was obtained from the competition among these reactions. The rate coefficient determined for reaction ( 5 ) was (8.6 ± 0.5) × 10?13 cm3 molecule?1 s?1 and was also found to be independent of the total pressure (253–880 Pa of N2). This result shows that the reaction of CCl3 with O3 cannot compete with its reaction with O2 in the ozone layer. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 310–316, 2003  相似文献   

9.
Helical shaped fused bis-phenothiazines 1 – 9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5 – 9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1 – 4 , lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1 – 9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.  相似文献   

10.
ABTS2-, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, was used as a reference to compare the reactivity of peroxyl radicals of two amino acids, glycine and valine, in aqueous solutions at natural pH. Peroxyl radicals were produced by pulse radiolysis and the product of their reaction with ABTS2- the ABTS*- radical was observed spectrophotometrically. Experimental kinetic traces were fitted using chemical simulation. The rate constants of reactions of glycine and valine peroxyl radicals with ABTS2- were (6.0+/-0.2)x10(6) and (1.3+/-0.1)x10(5) M-1.s-1, respectively. Moreover, it was found that only 60% of glycine radicals formed upon its reaction with *OH radicals reacted with molecular oxygen to yield peroxyl radicals. Comparison of experimental data with simulations of chemical reactions in irradiated ABTS and ABTS/NaSCN solutions showed that ABTS*- forms in the reaction with *OH with a yield of 43% and rate constant of (5.4+/-0.2)x10(9) M-1.s-1 and in the reaction with (SCN)2*- with a yield of 57% and rate constant of (8.0+/-0.2)x10(8) M-1.s-1.  相似文献   

11.
由于脂质过氧化反应(LPO)是导致人体疾病(如肝炎、肝硬化、动脉硬化、脑溢血等)的主要原因, 而黄酮类化合物是一类很强的过氧化反应抑制剂, 因此有必要研究其化学结构与过氧化反应的关系及其抗氧化机理.本文选择α-羟乙基过氧自由基为脂质过氧自由基的模拟物, 采用脉冲辐解方法研究了乙醇溶液中4种典型的黄酮类化合物(槲皮素、芦丁、儿茶素以及黄岑甙)与α-羟乙基过氧自由基的反应动力学, 测得其反应活性顺序为:芦丁>槲皮素>黄岑甙>儿茶素. 同时以黄酮体和邻苯二酚为黄酮类化合物不同结构特征的模型化合物, 用脉冲辐解法测得二者与α-羟乙基过氧自由基的反应速率常数分别为(1.7±0.1)×106和(2.9±0.1)×105 mol-1·dm3·s-1.实验结果表明, 在黄酮类化合物与α-羟乙基过氧自由基的反应中, A环C5位的羟基, C环C2=C3或B-C环的大π键和B环邻二羟基共存时清除α-羟乙基过氧自由基活性最好, 而且C环C2=C3或B-C环大π键的清除活性好于B环邻二羟基, 同时C环是否含有C3-醣甙结构对清除作用没有明显影响. 因此我们推测在黄酮类化合物抑制脂质过氧化反应过程中, 起主要作用的是C环C2=C3或B-C环的大π键与脂质过氧自由基的双键加成反应.  相似文献   

12.
Whenever free radicals are formed, independent of whether this occurs thermally, is induced by UV or ionizing irradiation, or takes place in redox reactions, they are converted rapidly into the corresponding peroxyl radicals in the presence of oxygen. Peroxyl radical reactions in aqueous environments are observed not only in aquatic systems (e.g., rivers, lakes and oceans) but also in the living cell and to a considerable degree even in the atmosphere (in water droplets). The peroxyl radical chemistry occurring in this medium is often very different from that observed in the gas phase or in organic solvents. In spite of the great importance of these reactions in medicine (for example in anti-cancer irradiation therapy and ischaemia) there have been comparatively few studies of peroxyl reactions in aqueous media. Radiation-chemical techniques such as pulse radiolysis offer the best means for carrying out such studies, so that it is not surprising that the majority of the information available in this area has been obtained with the help of radiation-chemical methods. The radiation chemistry of water can be con trolled in such a manner that the main products are ˙OH radicals (90 % yield), which react with substrate molecules to give substrate radicals and in the presence of oxygen to give substrate peroxyl radicals. The experimental conditions can also be varied in such a way that HO/O radicals can be formed in 100 % yield and caused to react with substrates. We therefore have a simple access to these intermediates, which are extremely important in biological systems. A detailed product analysis, supported by kinetic studies carried out with the help of pulse radiolysis, has been used to clarify the chemistry of a series of peroxyl radicals, so that sufficient material is now available to justify a review of the variety of the peroxyl radical reactions studied by means of radiation-chemical methods. A more general survey of the physical properties of the peroxyl radicals and their unimolecular and bimolecular reactions will be followed by a discussion of selected examples of various classes of substance. Because of the great biological importance of radical-induced DNA damage this area will also be treated briefly.  相似文献   

13.
An experimental setup that coupled IR multiple‐photon dissociation (IRMPD) and laser‐induced fluorescence (LIF) techniques was implemented to study the kinetics of the recombination reaction of dichlorocarbene radicals, CCl2, in an Ar bath. The CCl2 radicals were generated by IRMPD of CDCl3. The time dependence of the CCl2 radicals’ concentration in the presence of Ar was determined by LIF. The experimental conditions achieved allowed us to associate the decrease in the concentration of radicals to the self‐recombination reaction to form C2Cl4. The rate constant for this reaction was determined in both the falloff and the high‐pressure regimes at room temperature. The values obtained were k0 = (2.23 ± 0.89) × 10?29 cm6 molecules?2 s?1 and k = (6.73 ± 0.23) × 10?13 cm3 molecules?1 s?1, respectively.  相似文献   

14.
The kinetic parameters of the formation of single-strand breaks (ssb) induced by OH radicals in presence of oxygen and that of the decay of peroxyl radicals of the polynucleotide have been found to be very similar. The conclusion that the decay of the peroxyl radicals is involved in the rate-determining step of ssb formation is confirmed for poly(U) by a study of the effect of ethanol on ssb formation under conditions of laser pulse excitation. The kinetics of the formation of ssb for poly(U) is complex but is consistent with a first order followed by more complex reactions. This kinetics is compatible with a pathway to ssb formation assuming H abstraction from the sugar moiety by base peroxyl radicals as the rate-determining step in the beginning of the overall reaction.  相似文献   

15.
The rate constant of the reaction between CCl2 radicals and HCl was experimentally determined. The CCl2 radicals were obtained by infrared multiphoton dissociation of CDCl3. The time dependence of the CCl2 radicals' concentration in the presence of HCl was determined by laser‐induced fluorescence. The experimental conditions allowed us to associate the decrease in the concentration of radicals to the self‐recombination reaction to form C2Cl4 and to the reaction with HCl to form CHCl3. The rate constant for the self‐recombination reaction was determined to be in the high‐pressure regime. The value obtained at 300 K was (5.7 ± 0.1) × 10?13 cm3 molecule?1 s?1, whereas the value of the rate constant measured for the reaction with HCl was (2.7 ± 0.1) × 10?14 cm3 molecule?1 s?1.  相似文献   

16.
The kinetics of gamma-radiation-induced free-radical chain reactions in solutions of carbon tetrachloride in mixtures of varying composition of cyclohexane and n-hexane was investigated in the temperature range of 296°–413°K. Trichloromethyl radicals were produced by the reaction of radiolytically generated alkyl radicals with the solute. The kinetics of the following reactions were studied: The following rate expression was obtained: The error limits are the standard deviation from the least mean-square Arrhenius plots. The present results, combined with previously measured activation parameters for hydrogen-atom abstraction from c-C6H12 and n-C6H14 by CCl3 radicals relative to CCl3 combination, afford experimental evidence that the decay of trichloromethyl species in alkane solutions is a diffusion-limited process. The thesis that activation energies of reactions (4) and (5) in the liquid phase are equal to their respective values in the gas phase is confirmed.  相似文献   

17.
The oxidation of n-heptadecane was studied at various partial pressures of oxygen in an oxygen-argon mixture from 100 to 10% and various initiation rates W i in the range (1–5)·10−6 mol L−1 s−1 at 413 K. The kinetic curves of oxygen uptake and hydroperoxide buildup were obtained under the indicated conditions. The observed features of n-heptadecane oxidation at low concentrations of oxygen may qualitatively be explained and quantitatively described if the oxidation scheme takes into account the cross termination of alkyl and peroxyl radicals R · + RO2 · \underrightarrow k5 \underrightarrow {k_5 } ROOR along with the square termination of peroxyl radicals. A method for determination of the corresponding kinetic parameter by the dependence of the initial oxidation rate on the partial oxygen pressure was proposed. A method for identification of the key reactions and determination of the kinetic parameters by the kinetics of oxygen uptake at lowered oxygen concentrations was developed. The kinetic model of the process was obtained, which quantitatively describes the kinetic curves of oxygen uptake and hydroperoxide buildup at the initial steps of initiated oxidation of n-heptadecane.  相似文献   

18.
Determination of the oxygen radical absorption capacity (ORAC) served to discover antiperoxyradical activity of dimethyl selenoxide (DMSeO). The antiperoxyradical capacity of DMSeO is higher than that of the water-soluble analog of α-tocopherol and trolox and close to the value determined for the butylated hydroxy toluene (BHT). The redox parameters of DMSeO were determined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The anodic oxidation peaks of DMSeO on the CV and DPV voltammograms in the potential range from ?1200 to 1500 mV relative to Ag/Ag+ in CH2Cl2 confirm antioxidant activity of DMSeO towards oxidants and peroxyl radicals. It was established that Na2SeO3 in the acidic medium at pH = 3 shows the antiradical activity towards the stable radical of 2,2′-diphenyl-1-picryl hydrazyl (DPPH) and acts as a two-electron oxidant by trapping two DPPH radicals.  相似文献   

19.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

20.
Enthalpy, activation energy, and rate constant of 9 alkyl, 3 acyl, 3 alkoxyl, and 9 peroxyl radicals with alkanethiols, benzenethiol, and L ‐cysteine are calculated. The intersection parabolas model is used for activation energy calculations. Depending on the structure of attacking radical, the activation energy of reactions with alkylthiols varies from 3 to 43 kJ mol?1 for alkyl radicals, from 7 to 9 kJ mol?1 for alkoxyl, and from 18 to 35 kJ mol?1 for peroxyl radicals. The influence of adjacent π‐bonds on activation energy is estimated. The polar effect is found in reactions of hydroxyalkyl and acyl radicals with alkylthiols. The steric effect is observed in reactions of alkyl radicals with tert‐alkylthiols. All these factors are characterized via increments of activation energy. Quantum chemical calculations of activation energy and geometry of transition state were performed for model reactions: C?H3 + CH3SH, CH3O? + CH3SH, and HO2? + CH3SH with using density functional theory and Gaussian‐98. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 284–293, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号