首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
d-Galactose is oxidized in a reactor containing immobilized galactose oxidase to give hydrogen peroxide, which is determined spectrophotometrically after an oxidative colorforming reaction in a peroxidase reactor. On-line treatment in a dialyzer, a metal-chelate column and a catalase reactor makes the method essentially free from interferences for serum samples, for example. The effect of catalase impurities in the galactose oxidase preparation is illustrated. The linear range for the determination of d-galactose was from 10 μM to 14 mM, and the recovery from spiked serum samples, at low galactose levels, was close to 100%. The sample frequency was 45 h?1 and the sample volume was 160 μl. The sampler, the pump and the valves in the flow systm were controlled by a personal computer which also collected and analyzed the data.  相似文献   

2.
Dodge A  Brunet E  Chen S  Goulpeau J  Labas V  Vinh J  Tabeling P 《The Analyst》2006,131(10):1122-1128
A microfluidic poly(dimethylsiloxane) (PDMS) microdevice was realized, combining on-line protein electrophoretic separation, selection, and digestion of a protein of interest for identification by mass spectrometry. The system includes eight integrated valves and one micropump dedicated to control the flow operations. Myoglobin was successfully isolated from bovine serum albumin (BSA), then selected using integrated valves and digested in a rotary micromixer. Proteolytic peptides were recovered from the micromixer for protein identification. Total analysis from sample injection to protein identification is performed under 30 minutes, with samples of tens of nanolitres. The paper shows that PDMS technology can be successfully used for integrating complex preparation protocols of proteic samples prior to MS analysis.  相似文献   

3.
A novel multi-depth microfluidic chip was fabricated on glass substrate by use of conventional lithography and three-step etching technology. The sampling channel on the microchip was 37 microm deep, while the separation channel was 12 microm deep. A 1mm long weir was constructed in the separation channel, 300 microm down the channel crossing. The channel at the weir section was 6 microm deep. By using the multi-depth microfluidic chip, human carcinoma cells, which easily aggregate, settle and adhere to the surface of the channel, can be driven from the sample reservoir to the sample waste reservoir by hydrostatic pressure generated by the difference of liquid level between sample and sample waste reservoirs. Single cell loading into the separation channel was achieved by applying a set of pinching potentials at the four reservoirs. The loaded cell was stopped by the weir and precisely positioned within the separation channel. The trapped cell was lysed by sodium dodecyl sulfate (SDS) containing buffer solution in 20s. This approach reduced the lysing time and improved the reproducibility of chip-based electrophoresis separations. Reduced glutathione (GSH) and reactive oxygen species (ROS) were used as model intracellular components in single human carcinoma cells, and the constituents were separated by chip-based electrophoresis and detected by laser-induced fluorescence (LIF). A throughput of 15 samples/h, a migration time precision of 3.1% RSD for ROS and 4.9% RSD for GSH were obtained for 10 consecutively injected cells.  相似文献   

4.
This paper reports a prototype for a standard connector between a microfluidic chip and the macro world. This prototype demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data signals and energy supply. It supports up to 10 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. The socket has built-in valves for each flow channel. It also contains 28 pins for the connection of electrical signals and power. Built-in valves make it possible to control the flow in each channel independently. A chip ( 11.0 x 11.0 x 0.9 mm) can be mounted into or dismounted from the socket with one touch. The fluidic connectors of the socket are designed to contact vertically on the top of chip. And the electrical connectors (the spring array) of that physically support the chip and contact lead pads at the bottom of chip. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently.  相似文献   

5.
The sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume. The detection region consists of two pairs of electrodes fabricated within a channel 200 μm wide and 30 μm high. The focussing technique increases the sensitivity of the system without reducing the dimensions of the microfluidic channel. We demonstrate detection and discrimination of 1 μm and 2 μm diameter polystyrene beads and also Escherichia coli. Impedance data from single particles are correlated with fluorescence emission measured simultaneously. Data are also compared with conventional flow cytometry and dynamic light scattering: the coefficient of variation (CV) of size is found to be comparable between the systems.  相似文献   

6.
A system is described for monitoring flue gases from a plasma incinerator for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans. The system is composed of three basic units: sampler/preconcentrator, gas chromatograph and mass-selective detector. The sampler operates by solid sorbent trapping and thermal desorption. The use of two adsorbers allows sampling at a high flow rate (~1 1 min?1) and subsequent capillary gas chromatographic analysis without the need for cold traps. A sample trapped on the first adsorber is thermally desorbed and transferred by a carrier stream of 40 cm3 min?1 to a second smaller adsorber and retrapped. It is then thermally desorbed and injected into the capillary column by a carrier gas at an appropriate flow rate. A sequential valve-minder activates the electric actuators of the two six-port valves used in the design and also controls the power required for heating the adsorbers. Operation of the sampler is automated and is initiated by a single push-button switch. In simulation, the system allowed the separation of the major compounds of interest from possible interferences in <15 min and afforded unambiguous identification of the hazardous compounds and their quantification. For a sample volume of 20 1, the minimum detectable concentration of PCBs is 25–50 ng m?3.  相似文献   

7.
Pang S  Han C  Lee LM  Yang C 《Lab on a chip》2011,11(21):3698-3702
We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel's floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 μm FWHM). In our experiments, our established resolution was 1.0 μm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker(?).  相似文献   

8.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

9.
Long strands of DNA can be trapped and concentrated near the inlet of a microfluidic channel by applying a pressure gradient and an opposing electric field. The mechanism for trapping involves a migration of DNA perpendicular to both the fluid flow and the electric field. Migration leads to a highly nonuniform distribution of DNA within a cross section of the channel, with the bulk of the DNA concentrated in a thin (10 μm) layer next to the walls of the channel. This highly concentrated layer generates an electrophoretic flux toward the inlet to the device, despite the much larger fluid flow in the opposite direction. In this paper, the extent to which DNA can be trapped and concentrated by this means has been characterized by fluorescence measurements. At short times (<2 hours) nearly all the incoming DNA remains trapped within the device until the electric field is turned off. The DNA largely accumulates near the inlet, but after 30–60 minutes additional DNA starts to accumulate deeper into the channel. Eventually DNA leaks from the device itself, but ≈80% of the incoming DNA can be retained for up to 5 hours. Optimizing the electric field strength can increase the amount of DNA that can be trapped, but the efficiency is not affected by the channel cross‐section.  相似文献   

10.
In this work, we designed and manufactured a microfluidic device for isolation and purification of glycoprotein samples. The conceived sample preparation device was fabricated in polycarbonate by micro‐milling. The flow control and the fluid dosage into the micro‐channels was solved by equipping the device with integrated pneumatic valves. The biochemical functionality was provided by beaded support modified by molecules with affinity to glycoproteins which was stacked inside the micro‐channel reminiscent of packed affinity columns used in glycoprotein lectin assays. Unlabeled glycoproteins, namely fetuin, asialofetuin, and prostate‐specific antigen, were voltammetrically analyzed using catalytic peak H at silver amalgam electrode.  相似文献   

11.
Heule M  Manz A 《Lab on a chip》2004,4(5):506-511
The prospects of performing DNA hybridisation assays in a novel sequential scheme are explored in this article. It is based on recording the kinetics of hybridisation on a microfluidic device measuring only 10 by 5 mm. It contains a split channel system for fast mixing and a subsequent meandering channel to observe the evolution of the mixture by optical means. The problems of diffusion limitations in the laminar flow regime are overcome by reducing the average diffusion distance to a few micrometers only. DNA oligomers (20-mers) of different sequences were injected on the chip for mixing. The detection of hybridisation was based on the fluorescence of DNA-intercalating dyes. Two modes of operation were investigated. First, the samples were injected into the micromixing device at a high flow rate of 40 microl min(-1). When the sample passed through the actual micromixing unit, the flow rate was reduced to allow for measurement of fluorescence levels at various steady-state reaction times in the range of 2-15 s, as defined by the channel geometry. Using this continuous flow approach, photobleaching of fluorophores could be avoided. In a buffer containing 0.2 M NaCl, 2 base-pair mismatches could routinely be detected within 5-20 s. Single base-pair mismatches were successfully identified under low salt conditions. In the second mode, the flow was completely stopped and the evolution of the total fluorescence signal influenced by the hybridisation of oligomers and photobleaching was observed. Whereas the sequence-dependent effects remained unchanged, the assay times between the mixing of two oligomers and clear identification of their hybridisation properties could be reduced down to a maximum of 5-7 s, in some cases even below 1 s.  相似文献   

12.
In this work, the traditional liquid phase microextraction (LPME) has been miniaturized into a microfluidic device (μLPME) where liquid phase microextraction is combined with an HPLC procedure. This integration enables extraction and determination of acid drugs by μLPME and HPLC, respectively. The analytes selected for the test are five widely used non-steroidal anti-inflammatory drugs (NSAIDs): salicylic acid (SAC), ketoprofen (KTP), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU). They have successfully been detected in biological (urine and saliva) and environmental (lake and river water) samples with excellent clean up, high extraction efficiency and good enrichment factor under stopped-flow conditions. The μLPME consists of two small channels (acceptor and donor channel) separated by a support liquid membrane and has been implemented to allow a simple membrane replacement an arbitrary number of times. The sample (pH 12) and acceptor phase (pH 1.5) are delivered to the μLPME at 1 μL min−1 flow rate and the extraction is completed after 6 min. Under these conditions, the recoveries obtained in urine samples are over 87% for all compounds. For environmental water analysis, different types of water samples have been analyzed obtaining recoveries over 75% for all compounds. The sample consumption is dramatically decreased (<7 μL) as compared to traditional LPME. This confirms the advantages of the here proposed μLPME when using small volume/high cost samples. Finally, when the acceptor flow is turned off during the extraction time, high enrichment factor significantly increases with the extraction time for all compounds. As an example, the IBU is enriched by a factor of 75 after 25 min extraction consuming only 500 μL of sample.  相似文献   

13.
微流控芯片停流液-液萃取技术的研究   总被引:1,自引:0,他引:1  
基于微流控芯片的液-液萃取技术的研究是目前微流控芯片分析领域内的重要研究方向之一,与传统液-液萃取系统相比,萃取系统微型化所带来的优势表现为显著降低试样与试剂的消耗(仅为传统系统的万分之一)、分析速度快、易实现操作自动化和分析系统集成化。目前,在已报道的基于微流  相似文献   

14.
During the last few years, fluorescence activated cell sorter has played an important role in a variety of biological investigations as well as clinical diagnostics. However, the conventional fluorescence activated cell sorter has several limitations, such as large size, large sample volumes required for operation, and high cost. In this paper, we present a novel microfluidic device that can separate cells based on various fluorescent protein expression levels. Our system consists of three major parts: focusing, detection, and separation. The operating principles are briefly as follows: first fluorescent cells were delivered into the microfluidic chip and focused in the center of channel by sheath flow. Subsequently, the cells were excited by a 532 nm laser at 30 μW and concurrently detected by a photomultiplier tube. Based on their fluorescence intensities, the cells were separated into three outlets by a dielectrophoretic force. Using this system, we successfully separated the genetically modified cells at 0.1 μL/min (sample flow rate) to sheath flow rate at 1:5, 5 Vpp voltage, and 800 kHz frequency. The separation efficiency was measured as high as 94.7%. In conclusion, we found that our system has the capability of separating genetically modified cells with various fluorescent intensities and help study biology and medicine in a molecular level.  相似文献   

15.
Hepatitis A virus particles (d = 27 nm) were successfully accumulated and trapped in a microfluidic system by means of a combination of electrohydrodynamic flow and dielectrophoretic forces. Electric fields were generated in a field cage consisting of eight microelectrodes. In addition, high medium conductance (0.3 S/m) resulted in sufficient Joule heating and the corresponding spatial variation of temperature, density, and permittivity to induce electrohydrodynamic flow in the vicinity of the field cage. Flow vortices transport particles toward the center of the field cage, where dielectrophoretic forces cause permanent entrapment and particle aggregation. Spatial distribution of temperature, density, and permittivity as well as resulting flow patterns were modeled numerically and are in good agreement with experimental results. This accumulation scheme might be applicable to sample concentration enhancement in biosensor applications.  相似文献   

16.
A microfluidic device is described in which an electrospray interface to a mass spectrometer is integrated with a capillary electrophoresis channel, an injector and a protein digestion bed on a monolithic substrate. A large channel, 800 microm wide, 150 microm deep and 15 mm long, was created to act as a reactor bed for trypsin immobilized on 40-60 microm diameter beads. Separation was performed in channels etched 10 microm deep, 30 microm wide and about 45 mm long, feeding into a capillary, attached to the chip with a low dead volume coupling, that was 30 mm in length, with a 50 microm i.d. and 180 microm o.d. Sample was pumped through the reactor bed at flow rates between 0.5 and 60 microL/min. The application of this device for rapid digestion, separation and identification of proteins is demonstrated for melittin, cytochrome c and bovine serum albumin (BSA). The rate and efficiency of digestion was related to the flow rate of the substrate solution through the reactor bed. A flow rate of 1 or 0.5 microL/min was found adequate for complete consumption of cytochrome c or BSA, corresponding to a digestion time of 3-6 min at room temperature. Coverage of the amino acid sequence ranged from 92% for cytochrome c to 71% for BSA, with some missed cleavages observed. Melittin was consumed within 5 s. In contrast, a similar extent of digestion of melittin in a cuvet took 10-15 min. The kinetic limitations associated with the rapid digestion of low picomole levels of substrate were minimized using an integrated digestion bed with hydrodynamic flow to provide an increased ratio of trypsin to sample. This chip design thus provides a convenient platform for automated sample processing in proteomics applications.  相似文献   

17.
18.
Spencer D  Morgan H 《Lab on a chip》2011,11(7):1234-1239
Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.  相似文献   

19.
Sim TS  Kwon K  Park JC  Lee JG  Jung HI 《Lab on a chip》2011,11(1):93-99
Previously we introduced a novel hydrodynamic method using a multi-orifice microchannel for size-based particle separation, which is called a multi-orifice flow fractionation (MOFF). The MOFF has several advantages such as continuous, non-intrusive, and minimal power consumption. However, it has a limitation that the recovery yield is relatively low. Although the recovery may be increased by adjusting parameters such as the Reynolds number and central collecting region, poor purity inevitably followed. We newly designed and fabricated a microfluidic channel for multi-stage multi-orifice flow fractionation (MS-MOFF), which is made by combining three multi-orifice segments, and consists of 3 inlets, 3 filters, 3 multi-orifice segments and 5 outlets. The structure and dimensions of the MS-MOFF were determined by the hydrodynamic principles to have constant Reynolds numbers at each multi-orifice segment. Polystyrene microspheres of two different sizes (7 μm and 15 μm) were tested. With this device, we made an attempt to improve recovery and minimize loss of purity by collecting and re-separating non-selected particles of the first separation. The final recovery successfully increased from 73.2% to 88.7% while the final purity slightly decreased from 91.4% to 89.1% (for 15 μm). These values were never achievable with the single-stage MOFF (SS-MOFF) having only one multi-orifice segment in our previous work. The MS-MOFF channel will be useful for clinical applications, such as separation of circulating tumor cells (CTC) or rare cells from human blood samples.  相似文献   

20.
The integration and release of reagents in microfluidics as used for point-of-care testing is essential for an easy and accurate operation of these promising diagnostic devices. Here, we present microfluidic functional structures, which we call reagent integrators (RIs), for integrating and releasing small amounts of dried reagents (ng quantities and less) into microlitres of sample in a capillary-driven microfluidic chip. Typically, a RI is less than 1 mm(2) in area and has an inlet splitting into a central reagent channel, in which reagents can be loaded using an inkjet spotter, and two diluter channels. During filling of the microfluidic chip, spotted reagents reconstitute and exit the RI with a dilution factor that relates to the relative hydraulic resistance of the channels forming the RI. We exemplify the working principle of RIs by (i) distributing ~100 pg of horseradish peroxidase (HRP) in different volume fractions of a 1 μL solution containing a fluorogenic substrate for HRP and (ii) performing an immunoassay for C-reactive protein (CRP) using 450 pg of fluorescently labeled detection antibodies (dAbs) that reconstitute in ~5 to 30% of a 1 μL sample of human serum. RIs preserve the conceptual simplicity of lateral flow assays while providing a great degree of control over the integration and release of reagents in a stream of sample. We believe RIs to be broadly applicable to microfluidic devices as used for biological assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号