首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The infrared spectra of N-n-(4-nitrophenyl)azophenyloxyalkyldiethanolamines (Cn) are examined in the range of 4000-400cm-1 at different temperatures and the assignment of the fundamental vibrations given. Based on (1) the localization of the broad absorption band at 3456cm-1, and (2) attribution of the associated OH bands centred at 1410-1390, 1100, and 650-634cm-1 to, respectively deltaOH deformation, nuC-O stretching and gammaOH out-of-plane bending, intermolecular hydrogen bonding between OH groups in the crystalline, liquid crystalline and isotropic states is proposed. By considering the results of FTIR, WAXD and DSC measurements, the molecular arrangment of C10 in its smectic A phase as consisting of hydrogen bonding and strong interaction between dipolar groups (NO2) is proposed. This may explain the high stability and high orientational ordering property of Cn compounds in the liquid crystalline state compared with that of n-bromo-1-[4-(4-nitrophenyl)azophenyl] oxyalkanes (Bn).  相似文献   

2.
合成和表征了新型的含有甲氧基偶氮苯液晶基元的3,4,5-三取代苯甲酸衍生物Dn, 研究了结构对其相行为的影响. 结果表明, 在Dn中, 羰基(C=O)和羟基(OH)之间的氢键相互作用存在于结晶态、液晶态和各向同性状态, 在各向同性态时氢键较弱. 通过对其分子结构的调控, 有效地抑制了微相分离和强的分子间的相互作用, 得到了具有单向向列型液晶行为的3,4,5-三取代的苯甲酸衍生物.  相似文献   

3.
Two series of dissymmetric hydrazide derivatives containing alkoxyazobenzene with nitro terminal group and octyloxy terminal group, N-4-alkoxyphenyl-N′-4-((4-nitrophenyl)azophenyl) benzohydrazide (Bn-NO2, n indicates the number of carbon atoms) and N-4-octyloxyphenyl-N′-4-((4-octyloxyphenyl)azophenyl) benzohydrazide (B8-B8), were designed and synthesised, and their liquid crystalline properties were investigated by means of differential scanning calorimetry, polarised optical microscopy and wide-angle X-ray diffraction. It was found that B8-B8 with octyloxy terminal chains displayed monolayer smectic C phase, whereas Bn-NO2 with nitro terminal group displayed SmAd phase, and intermolecular hydrogen bonding was confirmed as the driving force. In addition, the effect of hydrogen bonding, dipole–dipole interactions and steric hindrance effect on the liquid crystalline structures were also discussed.  相似文献   

4.
Hydrogen bonding and interchain interactions in phytantriol, 3,7,11,15-tetramethyl-1,2,3-hexadecanetriol, have been studied by Fourier transform infrared (FT-IR) and Raman spectroscopies. Assignments of the bands were performed based on the OH/OD isotopic substitution, molecular modeling, and measurements of polarized Raman spectra. Marker bands were evaluated from the temperature-dependent spectral changes. It is shown that Raman spectroscopy provides sensitive markers, namely I(delta(CH2))/I(deltas(CH3)), tau(CH)2, I(nus(CH3)(FR))/I(nus(CH2)), and nus(CH2) for probing the interactions between the hydrocarbon chains. Hydrogen bonding interaction might be studied through the difference Raman spectroscopy by the analysis of polarized band at 811 cm-1. Relationship is found between the frequencies of IR bands at 883-873 and 1097-1086 cm-1, associated with the vibrations localized at the primary COH site, and the frequencies of OH stretching mode, making these bands specific markers in the analysis of hydrogen bonding. Evaluated marker bands may be of utility to probe the interchain and hydrogen bonding interaction of phytantriol with guest molecules in the practically important aqueous liquid-crystalline phases of this lipid.  相似文献   

5.
Ligands derived from the tripodal N4 ligand tris(pyridylmethyl)amine ((pyCH2)3N, tpa) of general formula (6-RNHpyCH2)nN(CH2py)(3-n)(R = H, n= 1-3 L(1-3); R = neopentyl, n= 1-3 L'(1-3)) were used to elucidate and quantify the magnitude of the effects exerted by hydrogen bonding and hydrophobic environments in the zinc-water acidity of their complexes. The pKa of the zinc-bound water molecule of [(L(1-3))Zn(OH2)]2+ and [(L'(1-3))Zn(OH2)]2+ 1'-3' was determined by potentiometric pH titrations in water (1-3) or water-ethanol (1:1) (1'-3'). The zinc(II) water acidity gradually increases as the number of -NH2 hydrogen bonding groups adjacent to the water molecule increases. Thus, the zinc-bound water of [(L3)Zn(OH2)]2+ and [(tpa)Zn(OH2)]2+ deprotonate with pKa values of 6.0 and 8.0, respectively. The pKa of the water molecule, however, is only raised from 8.0 in [(tpa)Zn(OH2)]2+ to 9.1 in [(bpg)Zn(OH2)]+ (bpa =(pyCH2)2N(CH2COO-)). Moreover, the acidity of the zinc-bound water of several of the five-coordinate zinc(II) complexes with the hydrogen bonding groups is greater than that of four-coordinate [((12)aneN3)Zn(OH2)]2+ (pKa = 7.0). This result shows that the magnitude of the effect exerted by the hydrogen bonding groups can be larger than that induced by changing one neutral by one anionic ligand, and/or even by changing the coordination number of the zinc(II) centre. The X-ray structure of [(L'2)Zn(OH)]ClO4 2' and [(L'3)Zn(OH)]ClO4.CH3CN 3'.CH3CN is reported, and show the neopentylamino groups forming N-H...O hydrogen bonds with the zinc-bound hydroxide. Although, which have hydrogen bonding and hydrophobic groups, have a zinc-bound water more acidic than [(tpa)Zn(OH2)]2+, their pKa is not always lower than that of 1-3. This result suggests that a hydrogen bonding microenvironment may be more effective than a hydrophobic one to increase the zinc-water acidity.  相似文献   

6.
The liquid crystalline behaviour of methyl-6-O-(n-dodecanoyl)-α-D-glucopyranoside, 1, has been characterised using X-ray diffraction and variable temperature Fourier transform infrared (FTIR spectroscopy). 1 exhibits a monotropic interdigitated smectic A phase consisting of bilayers in which the alkyl chains are overlapped. The crystal–isotropic transition is accompanied by a pronounced decrease in the strength of the hydrogen bonding network involving the sugar groups resulting in a marked change in the environment of the alkyl chains. The isotropic phase consists of disordered smectic-like domains stabilised via hydrogen bonding between the sugar groups. At the transition to the smectic A phase, a subtle change in hydrogen bonding is observed which is manifested by a change in the temperature dependence of the OH stretching peak position in the FTIR spectrum. On crystallisation, the strong hydrogen bonding network is re-established accompanied by a change in the conformational distribution of the alkyl chains. A model is proposed in which a combination of hydrogen bonding (enthalpic effects) and conformational arrangements (entropic effects) promotes initially the formation of smectic-like domains in the isotropic phase and subsequently stabilises the smectic A phase by inhibiting the microphase separation leading to the crystal phase.  相似文献   

7.
Two liquid crystal materials, 4,4'-bis(ω-hydroxyalkoxy)-α-methylstilbenes, with butyloxy and octyloxy terminal chains and denoted HAMS-4 and HAMS-8, respectively, were synthesized. The corresponding compounds, 4,4'-bis(ω-alkoxy)-α-methylstilbenes (AMS-n) (n = 2 to 7, 9, 10 and 11), which do not hydrogen bond, were also synthesized and used to study the influence of hydrogen bonding on phase behaviour. DSC, polarizing optical microscopy and miscibility studies were used for determination of the structure and property relationships of the various liquid crystalline phases exhibited by the two homologues and the AMS-n homologues. The FTIR spectra were measured at various temperatures on going from the crystalline phase to the isotropic phase through the intermediate phases. The characteristics of the OH stretch band, the CH2 stretching, bending and rocking progression modes, as well as the ring C C stretch and the ring skeletal vibrations were studied to elucidate the modes and geometry of the hydrogen bonding of the terminal OH group, the conformation of the terminal chains and the intermolecular interaction between the aromatic mesogenic cores in the various phases.  相似文献   

8.
制备了高氯酸锂(LiClO4)与1,3-氮氧杂环-戊-2-酮(OZO)形成的二元熔盐电解质, 虽然先导物具有较高的熔点, 但二者可形成均一、稳定的共熔体系, 测试结果表明该熔盐体系具有低的共熔温度(-50 益). 红外光谱分析表明OZO 通过Li—O 键与LiClO4中Li+配位而破坏了LiClO4的离子键,形成很大的配位阳离子,削弱了阴阳离子间的库伦作用力; 同时Li—O 配位也导致OZO 分子间的氢键断裂, 因而体系的共熔温度较之纯物质熔点显著降低, 部分样品室温下以液体状态稳定存在. 采用交流阻抗法和循环伏安法对其电化学性质进行研究, 结果显示, 配比n(LiClO4):n(OZO)=1:4.5 的样品室温(25 ℃)电导率为0.66×10^-3 S·cm^-1, 80 ℃电导率为7.33×10^-3 S·cm^-1; 其电化学稳定电位窗口约为3.5 V.  相似文献   

9.
将硝酸铵液滴沉积在石英基底上,通过降低该液滴周围环境的相对湿度,测定了该液滴由低浓度直至过饱和状态下高信噪比的拉曼光谱.其中,相对湿度的变化可以精确控制液滴浓度的改变.在相对湿度(RH)由72.1%降低至37.9%的过程中,硝酸铵液滴v1-NO-3峰位保持在1048cm-1,半峰宽为10cm-1.该现象表明NO-3周围的水分子被NH4+取代后不会对v1-NO-3造成影响,说明水分子和NH4+所形成的氢键具有相同的强度.对2500-4000cm-1范围内的拉曼光谱进行成分分析,2890、3090、3140、3220、3402及3507cm-1分别被指认为NH+4伞状弯曲振动的泛频、NH+4伞状弯曲振动与摇摆振动的组合谱带、NH+4的对称伸缩振动、NH+4的反对称伸缩振动、水峰中强氢键成分和弱氢键成分.从拟合结果得出:强氢键在氢键结构中所占百分含量随液滴相对湿度的降低而减少,弱氢键所占百分含量随液滴相对湿度的降低而增加.该变化趋势是NO-3和NH+4之间复杂相互作用的结果.  相似文献   

10.
A novel type of liquid crystalline system, namely 5-[4-(4-methoxyphenylazo)phenyloxyalkyloxy]isophthalic acidhydrazides (Dn, n = 3, 6, 10) was designed and synthesized. The FTIR spectra of the Dn compounds were examined in the range 4000-1000 cm-1 at different temperatures. The results showed that the stretching vibration frequencies of the NH and C=O groups, and the NH2 deformation shifted to lower frequencies with decrease of temperature, while out-of-plane NH bending shifted slightly to higher frequency. Intermolecular hydrogen bonding between NH, NH2 and C=O groups is proposed and the schematic supramolecular Dn structure is given. This may explain the higher Dn transitional temperatures and their smectic phase behaviour compared with that of 5-[4-(4-methoxyphenylazo)phenyloxyalkyloxy]isophthalic acid diethyl esters.  相似文献   

11.
We studied the influence of hydrogen bonding on the fundamental and overtone bands of the OH-stretching vibration of each OH group in the intramolecularly hydrogen-bonded OH(I)::OH(II) pair in 1,2-, 1,3- and 1,4-diols. The hydrogen bonding between the two OH groups significantly increases in strength from the five-membered ring of a 1,2-diol to the seven-membered ring of a 1,4-diol. Although the hydrogen bonding does not affect the vibrational property of the OH(II) (or acceptor), it significantly influences the OH(I) (or donor). As the hydrogen bonding becomes stronger from a 1,2- to a 1,4-diol, the fundamental band of the OH-stretching shifts downwards by from about 50 to 140 cm(-1), and the overtone band markedly decreases in intensity, although the effect on the intensity and bandwidth of the fundamental band varies among 1,2-, 1,3- and 1,4-diols. The quantum-mechanically calculated normal frequencies of the acceptor and donor OH groups in the hydrogen-bonded ring are in good agreement with the observed frequencies. The calculated interatomic distance between the O of an acceptor OH and the H of a donor OH is the shortest for a 1,4-diol, which is consistent with the largest frequency shift caused by the hydrogen bonding.  相似文献   

12.
We have studied the oxidation of self-assembled monolayers (SAMs) of alkanes and alkenes with a thermal beam of OH radicals. The target films were produced by bonding alkane thiols and alkene thiols to a gold surface and the SAMs are mounted in a vacuum chamber at a base pressure of 10-9 Torr. Hydroxyl radicals were produced by a corona discharge in an Ar/H2O2/water mixture. The resultant molecular beam was scanned by an electrostatic hexapole and the OH radicals [4 (+/- 1) x 1011 OH radicals cm-2 sec-1] were focused onto the target SAM. All of the hydroxyl radicals impinging on the SAM surface are rotationally (J' ' 相似文献   

13.
The vibrational spectrum of molecular propanoic acid, cooled in a supersonic expansion, in the region of 2500 to 7500 cm(-1) is obtained employing infrared plus vacuum ultraviolet nonresonant ionization detected spectroscopy. The fundamental and first overtone of the CH and OH stretch modes of cold propanoic acid molecules can be identified in the spectrum. Propanoic acid neutral and ionic clusters are also studied employing nonresonant ion dip and photodissociation spectroscopic techniques, respectively. For the neutral dimer, a sequence of features observed at ca. 2500-2700 cm(-1) can be assigned as combination bands of low frequency modes with the COH bending overtone; these features characterize the cyclic dimer ring structure. IR spectra of the larger neutral clusters n=3, 4, 5 indicate that they also have cyclic structures in which the OH groups are engaged in the cluster hydrogen bonding network. The CH groups are not involved in this hydrogen bonding structure. Free OH features are observed for the protonated ion clusters (C(2)H(5)COOH)(n)H(+), n=1,...,5, indicating that at least one OH group of these cluster ions is not involved in the cluster hydrogen bonding network. A comparison of the results for four hydrogen bonding neutral and ionic clusters (CH(3)OH, C(2)H(5)OH, CH(3)COOH, and C(2)H(5)COOH) is presented and discussed.  相似文献   

14.
We have synthesized poly(methyl methacrylate- b-4-vinylpyridine) (PMMA- b-P4VP) and poly(styrene- r-vinylphenol) (PS- r-PVPh) copolymers by using anionic and free radical polymerizations, respectively. Well-defined micelles through hydrogen bonding have been prepared by mixing PMMA- b-P4VP diblock copolymer and PS- r-PVPh random copolymer in a single solvent. Block copolymers were mixed with random copolymers, with various [N]/[OH] ratios (4/1, 2/1, 1/1, and 1/4) in which "[N]/[OH]" represents the molar ratio of pyridine groups on P4VP to hydroxyl groups on PVPh. The presence distribution of PVPh/P4VP and PVPh/PMMA hydrogen bonding depends on the feeding ratio of PVPh to P4VP. When the PVPh content is lower than that of P4VP, hydrogen bonding occurs only between PVPh and P4VP; with excess PVPh, additional hydrogen bonding between PVPh and PMMA would occur. Furthermore, the effect of the solvent quality on the self-assembly behavior of PMMA- b-P4VP/PS- r-PVPh blends is investigated by considering tetrahydrofuran (THF) and dimethylformamide (DMF) as common solvents. We can mediate the strength of hydrogen bonding in blend systems by adopting different solvents and inducing different morphology transitions.  相似文献   

15.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

16.
Ni/PtHY with different Ni loadings was prepared by impregnating HY with hexachloroplatinic acid solution and Ni2+/N,N-dimethylformamide solution. An increase in the Ni loading decreased the crystallinity, specific surface area and meso-micropores of the catalysts. Ni interacted with hydroxyl groups to produce IR absorption bands at 3740-3500 cm-1. Increasing Ni loadings resulted in a decrease in the intensities of the broad bands at 3730-3500 cm-1 and the sharp band at 3740 cm-1 with simultaneous development of new absorbance band at 3700 cm-1 that was attributed to (-OH)Ni. The acidity of the samples did not significantly change with Ni loadings up to 1.0 wt%, which indicated that Ni mostly interacts with non-acidic silanol groups (terminal- and structural-defect OH groups). The presence of Ni decreased the activity of PtHY toward the isomerization of n-pentane because of a decrease in the number of active protonic-acid sites that formed from molecular hydrogen. IR and ESR studies confirmed that Pt facilitated the formation of protonic-acid sites from molecular hydrogen, whereas Ni, even when combined with Pt, didn’t exhibit such ability. The absence of protonic-acid sites from molecular hydrogen significantly decreased the yield of iso-pentane and markedly increased the cracking products.  相似文献   

17.
Topological analysis of the electron density profiles and the atomic basin integration data for the most energetically favorable (4)C(1) and (1)C(4) conformers of beta-D-glucopyranose, calculated at the B3LYP/6-31+G(d), MPWlPW91/6-311+G(2d,p), and MP2/6-31+G(d) levels, demonstrates that intramolecular hydrogen bonding between adjacent ring OH groups does not occur in glucopyranose, given the need to demonstrate a bond critical point (BCP) of correct (3,-1) topology for such an interaction to be termed a hydrogen bond. On the other hand, pyranose ring OH groups separated by three, rather than just two, carbon atoms are able to form an intramolecular hydrogen bond similar in topological properties and geometry to that found for propane-1,3-diol. Vicinal, equatorial OH groups in the (4)C(1) conformer of glucopyranose are, however, able to form strong bidentate hydrogen bonds with water molecules in a cooperative manner, each water molecule acting simultaneously as both hydrogen bond donor and acceptor, and characterized by (3,-1) bond critical points with increased values for the electron density and the Laplacian of rho(r) compared to an isolated ethane-1,2-diol/water complex.  相似文献   

18.
New cholesteric liquid crystals induced by intermolecular hydrogen bonding   总被引:1,自引:0,他引:1  
New cholesteric liquid crystals induced by intermolecular hydrogen bonding between 3-cholesteryloxycarbonylpropanoic acid (MCB) and 4-(4-alkoxybenzoyloxy)-4-stilbazoles ( n SZ); between MCB and N -(4-pyridylmethylidiene)anilines ( n -PMA) were prepared. Their liquid crystalline properties were investigated by DSC, polarized optical microscopy and X-ray diffraction. Cholesteric and smectic phases were observed. In order to study the influence of covalent and non-covalent bonding upon the liquid crystal behaviour several new covalently bonded N -\[4-(3-cholesteryloxycarbonylpropionyloxy)benzylidiene]-4-alkoxy anilines were investigated.  相似文献   

19.
H(Mg,Co)AlPO4—5杂原子分子筛的酸性质测定   总被引:3,自引:0,他引:3  
以红外光谱和程序升温脱附法研究了H(Mg,Co)AlPO_4-5分子筛的酸性,样品红外谱图中的3820和3680cm~(-1)谱峰分别归属于v_(Al—OH)和v_(p—OH),而3660~3568cm~(-1)谱峰则分别归属于HMgAlPO_4-5和HCoAlPO_4-5分子筛的M(OH)P(M=Mg,Co)基团的振动,酸强度顺序为:Co(OH)P>Mg(OH)P>P(OH)>Al(OH),吡啶吸附的红外光谱揭示,H(Mg,Co)AlPO_4-5分子筛具有较高酸强度的B酸和L酸中心。NH_3-TPD表明分子筛的酸强度顺序为H(Co)AlPO_4-5>H(Mg)AlPO_4-5>>AlPO_4-5。  相似文献   

20.
A series of side chain liquid crystal polyurethanes (CnCNPs), in which the spacer length was varied from 2 to 12 methylene units, were synthesized by the addition polymerization of α-[bis(2-hydroxyethyl)amino]-ω-(4-cyanoazobenzene-4′-oxy)alkanes (CnCN-diols) with hexamethylene diisocyanate. The liquid crystalline properties of CnCNPs were characterized by means of differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. Polyurethanes with spacer length 4 or higher exhibited mesomophic properties. C4CNP and C5CNP exhibited an enantiotropic nematic mesophase, while C6-C12CNPs exhibited enantiotropic bilayer smectic mesophases. CnCNPs have a high tendency to crystallize; crystallization is kinetically controlled. Polyurethane's backbone crystallization is closely related to hydrogen bonding. To establish the role of hydrogen bonding in mesophase formation as well as crystallization, Fourier transform infrared spectroscopy studies of CnCNPs were carried out at different temperatures focusing on H-bonds between the N H and CO groups of the urethane backbone. With increasing temperature, CO and N H stretching bands were evenly shifted to higher wavenumbers, with two exceptions (C4CNP and C5CNP) discussed in detail in the text. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2135–2146, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号