首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A study is made of electron-electron correlation functions for use in trial wave functions for small molecules. New forms are proposed that have only a few variational parameters, and these parameters have physical meanings that are easily discerned. Total energies for H2, LiH and Li2 computed using these correlation functions are presented, and comparison is made with previous forms, including the Jastrow-Pade form often used in Monte Carlo studies. We further treat the possibility that correlation depends not only on the separation of a pair of electrons but also on the location of the electron pair relative to the nuclei — indicative of a density-dependent or many body correlation effect. Our results indicate that such a many-body correlation effect is weakly present.This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098  相似文献   

2.
A global survey of the correlation factor energy functionals and its application to atomic and molecular properties is made. Its performances are compared with those of the density functional theory (DFT) correlation energy functionals, and some interesting conclusions from previous publications are reinforced here; namely, after removing the one-Slater-determinant hypothesis from the Kohn–Sham method, all DFT correlation functionals are able to provide reasonable results in any circumstance, with an additional restriction, for systems having a quasi-degenerate wave function, the DFT correlation functionals must depend explicitly on the on-top density. Acknowledgement.This work has been done under the support of the Spain DGICYT, project n0 BQU2001-0883.  相似文献   

3.
4.
A method is introduced which allows to compute self-consistent restricted Hartree-Fock wave functions for excited Rydberg configurations. The concepts of reorganization and electron correlation of Rydberg states are discussed. As an illustration Hartree-Fock calculations for the (ls)(nl) Rydberg series of He are presented.  相似文献   

5.
6.
A relation between the cluster expansion theory of many electron wave functions and the correlated wave functions method is established. In this way, the theoretical basis of the method is elucidated and the approximations involved in its application become apparent. General forms of the correlated wave function, differing in certain important respects from that form usually assumed, are derived.  相似文献   

7.
In order to interpret measured intensity autocorrelation functions obtained in evanescent wave scattering, their initial decay rates have been analyzed recently [P. Holmqvist, J. K. G. Dhont, and P. R. Lang, Phys. Rev. E 74, 021402 (2006); B. Cichocki, E. Wajnryb, J. Blawzdziewicz, J. K. G. Dhont, and P. R. Lang, J. Chem. Phys. 132, 074704 (2010); J. W. Swan and J. F. Brady, ibid. 135, 014701 (2011)]. A theoretical analysis of the longer time dependence of evanescent wave autocorrelation functions, beyond the initial decay, is still lacking. In this paper we present such an analysis for very dilute suspensions of spherical colloids. We present simulation results, a comparison to cumulant expansions, and experiments. An efficient simulation method is developed which takes advantage of the particular mathematical structure of the time-evolution equation of the probability density function of the position coordinate of the colloidal sphere. The computer simulation results are compared with analytic, first and second order cumulant expansions. The only available analytical result for the full time dependence of evanescent wave autocorrelation functions [K. H. Lan, N. Ostrowsky, and D. Sornette, Phys. Rev. Lett. 57, 17 (1986)], that neglects hydrodynamic interactions between the colloidal spheres and the wall, is shown to be quite inaccurate. Experimental results are presented and compared to the simulations and cumulant expansions.  相似文献   

8.
Local Coulomb correlation hole distribution functions may be used to assess the extent to which electron correlation effects are present in large scale SCF + CI wave functions. From a set of modified virtual orbitals, ordered according to their interaction with the SCF configuration, we have constructed a limited SCF + CI wave function with improved convergence characteristics with respect to that formed from the canonical virtual orbital set. These wave functions, of the same size yet with different energies, have been used to examine the range and depth of local Coulomb correlation holes in FCN. In all cases, the depth of the local Coulomb hole is no more than 10% or so of that of the corresponding Fermi hole, and the range Fermi correlation is generally less than that of Fermi correlation. This is particularly marked in the high density regions around the nuclei. The significance of our results is discussed in relation to a recent proposal for the incorporation of Coulomb correlation into the local exchange method.  相似文献   

9.
Pair correlation in the ground state of the Li isoelectronic sequence is studied through four approximate wave functions which incorporate inter- and intrashell pair correlation. Of these functions, two possess symmetry appropriate to a three-electron system, while two do not. The functions are not variational functions in the usual sense. They are instead fixed linear combinations of products of orbitals and pair functions for the appropriate states of two-electron atoms. They are considered here as zero-order approximations to the exact wave functions, and the corresponding zero-order Hamiltonians are obtained. The simplest of these functions is improved by the introduction of a screening parameter for the “outer” electron. This latter function is found to be a satisfactory compromise between accuracy and simplicity and is proposed for study via higher-order perturbation theory.  相似文献   

10.
11.
A recently proposed perturbational approach to the electron correlation cusp problem 1 is tested in the context of three spherically symmetrical two‐electron systems: helium atom, hydride anion, and a solvable model system. The interelectronic interaction is partitioned into long‐ and short‐range components. The long‐range interaction, lacking the singularities responsible for the electron correlation cusp, is included in the reference Hamiltonian. Accelerated convergence of orbital‐based methods for this smooth reference Hamiltonian is shown by a detailed partial wave analysis. Contracted orbital basis sets constructed from atomic natural orbitals are shown to be significantly better for the new Hamiltonian than standard basis sets of the same size. The short‐range component becomes the perturbation. The low‐order perturbation equations are solved variationally using basis sets of correlated Gaussian geminals. Variational energies and low‐order perturbation wave functions for the model system are shown to be in excellent agreement with highly accurate numerical solutions for that system. Approximations of the reference wave functions, described by fewer basis functions, are tested for use in the perturbation equations and shown to provide significant computational advantages with tolerable loss of accuracy. Lower bounds for the radius of convergence of the resulting perturbation expansions are estimated. The proposed method is capable of achieving sub‐μHartree accuracy for all systems considered here. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

12.
A computational method for calculating quadrupole moments from molecular wave functions in a Slater orbital basis set is described. Using both IEHT and CNDO wave functions quadrupole moments for a series of polyatomic molecules are calculated. They are compared with experimental results and the IEHT wave functions are found to give agreement with experiment while CNDO wave functions do not. The importance of bicentric densities (overlap densities) in the calculation of multipole moments is shown. This is followed by a discussion of the usefulness of these wave functions for a quantitative characterization of the electronic structure of large molecules.  相似文献   

13.
An exact cluster expansion of many electron wave functions is derived, beginning with a finite linear combination of Slater determinants rather than the more usual single determinant. This general cluster expansion is found to apply both in the case where all possible Slater determinants from a finite set of spin orbitals are included in the linear combination, and in the case where the number of determinants is restricted. The special properties of that finite linear combination of determinants closest to the exact wave function in the least squares sense are studied. These properties lead to the derivation of a general correlated wave functions method, illustrating again the close relationship between methods of this type and cluster expansion theory. Additional approximations, necessary for practical calculations, are set out.  相似文献   

14.
A method has been developed to analyzed the bond and current correlation structures of a molecular many-electron wave function. It is shown that the second order density matrix contains information about the bond and current correlations in its off-diagonal components with respect to the indices of orbital basis functions. We break down the off-diagonal correlation functions into five kinds: charge, spin scalar, spin quadrupole, charge spin, and spin polar correlation functions. For a real wave function, the four correlation functions, except for the spin polar one, have only symmetric–symmetric and antisymmetric–antisymmetric components. The former components give site–bond and bond–bond correlations of charges and spins, while the latter components give current–current correlations of charges and spins. The spin polar correlation function has only symmetric–antisymmetric components that give site–current and bond–current correlations of spins. The five off-diagonal correlation functions are expressed in terms of the off-diagonal components of the second order density matrix. The linked off-diagonal correlation functions are defined in that they give dynamical bond and current correlations. The method is applied to the analyses of the bond and current correlations in the low lying exact eigenstates of the PPP Hamiltonian of benzene.  相似文献   

15.
The de Broglie-Bohm formulation of the Schrodinger equation implies conservation of the wave function probability density associated with each quantum trajectory in closed systems. This conservation property greatly simplifies numerical implementations of the quantum trajectory dynamics and increases its accuracy. The reconstruction of a wave function, however, becomes expensive or inaccurate as it requires fitting or interpolation procedures. In this paper we present a method of computing wave packet correlation functions and wave function projections, which typically contain all the desired information about dynamics, without the full knowledge of the wave function by making quadratic expansions of the wave function phase and amplitude near each trajectory similar to expansions used in semiclassical methods. Computation of the quantities of interest in this procedure is linear with respect to the number of trajectories. The introduced approximations are consistent with approximate quantum potential dynamics method. The projection technique is applied to model chemical systems and to the H+H(2) exchange reaction in three dimensions.  相似文献   

16.
A new scheme for generating and selecting configurational wave functions (CWF) including the correlation effects is suggested. Standard Möller-Plesset perturbation theory (SMP) is modified in such a way that the newly constructed CWF and the Hartree-Fock reference determinant are the eigenfunctions of a zero-order Hamiltonian. Possessing all advantages of SMP, the calculation scheme allows for more than 80% of the empirical correlation energy in the second order. The results for diatomic hydrides are comparable in accuracy to those obtained by the configuration interaction method.  相似文献   

17.
The Coulomb correlation hole distribution function has been computed with respect to various reference centers in the HCN molecule, using standard SCF +CI type wave functions. The extent to which statistical correlation between unlike-spin electrons is introduced into an SCF wave function through the inclusion of configuration interaction has been assessed by an examination of the range and depth of such holes, and compared with the behavior of analogous Fermi distribution functions. Our results show that the range of Fermi correlation is consistently longer than that of the corresponding Coulomb correlation.  相似文献   

18.
A new method is proposed for calculating correlation effects in atomic and molecular systems. The basis of the method is the formulation of a set of partial configuration expansions which yield directly variational orbital correlation corrections which are appropriately summed in order to obtain an estimate of the total correlation energy. This method is applied to the ground state of boron hydride and its cation at the equilibrium distance of BH. The results of the method are compared in detail with independent electron pair results and second order CI results. It is further shown that multiple substitutions are approximately accounted for in this method and the extent to which they are included is compared with other approximations. Finally, three methods of increasing accuracy, aimed at reducing the necessary computational effort, are given for determining the vertical ionization potential. The most economical method yields an IP of 9.70 eV or 0.03 eV less than the experimental IP. Completion of the basis is estimated to improve this value to 9.77 eV.  相似文献   

19.
Abstract

The linearized hydrodynamic equations for a binary ionic fluid, with specific reference to a dissociated molten salt, are used to evaluate correlation functions of local fluctuation variables and the corresponding response functions. Previous results for the instantaneous correlation functions are extended and connected with thermodynamic fluctuation theory. Different dynamical behaviours, depending on the relative magnitude of the relaxation frequency for charge fluctuations and the sound wave frequency, are demonstrated. When 4πσ/? > ck, charge fluctuations are uncoupled from mass fluctuations, the latter being isomorphous to those of a one-component neutral fluid. Kubo relations for the transport coefficients are derived in this regime. When 4πσ/? < ck, the behaviour of the ionic fluid becomes isomorphous to that of a neutral mixture, with electrical conduction playing a role analogous to interdiffusion and contributing, in particular, to the damping of sound waves. An interpolation formula between these two limiting behaviours of the relaxation frequencies is also derived. The consequences of these results for the light scattering spectrum of an ionic fluid are briefly discussed  相似文献   

20.
The self-correlated field method is based on the insertion in the group product wave function of pair functions built upon a set of correlated “local” functions and of “nonlocal” functions. This work is an application to three-electron systems. The effects of the outer electron on the inner pair are studied. The total electronic energy and some intermediary results such as pair energies, Coulomb and exchange “correlated” integrals, are given. The results are always better than those given by conventional SCF computations and reach the same level of accuracy as those given by more laborious methods used in correlation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号