首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A novel and efficient sample preconcentration technique based on the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) coated with silica (SiO2) has been developed for extraction and determination of sulpiride. The functionalized MNPs showed excellent dispersibility in aqueous solution and were applied to magnetic solid‐phase extraction of sulpiride from human urine and blood prior to high‐performance liquid chromatography analysis. The separation, preconcentration and desorption procedure was completed in 10 min. Optimal experimental conditions, including sample pH, the amount of the MNPs, eluent type and volume, and the ultrasonication time were studied and established. The method showed good linearity for the determination of sulpiride in the concentration range of 10–1000 ng/mL in urine and blood. The recovery of the method was in the range between 91.2 and 97.5%, and the limit of detection was 2 ng/mL for sulpiride in human blood and urine. The results indicated that the present procedure is a suitable pretreatment method for biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A new method is presented for simultaneous preconcentration of trace Fe(III) and Cr(III) by using polyacrylic acid-alumina as a sorbent. The separation/preconcentration conditions of analytes were investigated, including effect of pH, flow rate, elution conditions, sample volume, and interfering ions. At pH 4, the maximum sorption capacities of Fe3+ and Cr3+ were 8.0 and 13.0 mg/g, respectively, by the column method. The linearity was maintained in the concentration range of 0.175-6.0 x 10(3) ng/mL for iron and 0.175-8.0 x 10(3) ng/mL for chromium in the original solution. The RSD values under optimum conditions were +/- 1.73 and +/- 1.28% for 2.0 microg/mL Fe and Cr, respectively. The preconcentration factor was 400 for both of the elements, and detection limits were 0.025 and 0.023 ng/mL for Fe and Cr in the original solutions. The proposed method was successfully applied to the determination of trace amounts of Fe and Cr in plant samples.  相似文献   

3.
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward copper has been investigated systemically, and a new method has been developed for the determination of trace copper in water samples based on preconcentration with a microcolumn packed with MWNTs prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of copper, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. Copper can be quantitatively retained by MWNTs in the pH range 5-8, and then eluted completely with 0.5 M HNO3. The detection limit of this method for Cu was 0.42 ng/mL, and the RSD was 3.5% at the 10 ng/mL Cu level. The method was validated using a certified reference material, and has been successfully applied for the determination of trace copper in water samples.  相似文献   

4.
Yamane T  Osada Y  Suzuki M 《Talanta》1998,45(3):583-589
A sensitive and rapid method is presented for the determination of vanadium at ng to sub-ng ml(-1) levels in natural waters, in which in-line preconcentration/separation is directly coupled with catalytic detection of vanadium in a flow-injection system. Vanadium was adsorbed on a small column packed with Sephadex G-25 gel and desorbed with a small volume of 0.010 M HCl. The catalytic action of vanadium on the oxidation of chromotropic acid (1,8-dihydroxy-3,6-naphthalenedisulphonic acid) by bromate in pH 3.8 buffered media was used in the sensitive determination of vanadium. Effective preconcentration/separation of trace vanadium can be achieved from Fe(III), Cu(II) and a large excess of sodium chloride in seawater sample. A linear calibration using a 5 m sample loop was obtained for vanadium in the range 0-2.5 ng ml(-1). The limit of detection was 0.02 ng ml(-1) and the relative standard deviation was 1.2% for 1.0 ng ml(-1) vanadium (n=5). The present FIA system is rapid and sensitive and can be readily applied to river water and coastal seawater samples.  相似文献   

5.
This work reports the development of a simple and automated method for the quantitative determination of several contaminants (triazine, phenylurea, and phenoxyacid herbicides; carbamate insecticides and industrial chemicals) and their metabolites in human urine with a simplified sample treatment. The method is based on the online coupling of an extraction column with RP LC separation–UV detection; this coupling enabled fast online cleanup of the urine samples, efficiently eliminating matrix components and providing appropriate selectivity for the determination of such compounds. The variables affecting the automated method were optimized: sorbent type, washing solvent and time, and the sample volume injected. The optimized sample treatment reported here allowed the direct injection of large volumes of urine (1500 μL) into the online system as a way to improve the sensitivity of the method; limits of detection in the 1–10 ng/mL range were achieved for an injected volume of 1500 μL of urine, precision being 10% or better at a concentration level of 20 ng/mL. The online configuration proposed has advantages such as automation (all the steps involved in the analysis – injection of the urine, sample cleanup, analyte enrichment, separation and detection – are carried out automatically) with high precision and sensitivity, reducing manual sample manipulation to freezing and sample filtration.  相似文献   

6.
This paper describes the application of organo nanoclay, an easily prepared and stable solid sorbent, to the preconcentration of trace amounts of palladium ions in aqueous solution. The organo nanoclay was prepared by adding tetradecyldimethylbenzylamonium chloride onto montmorillonite, which was then modified with 1-(2-pyridylazo)-2-naphthol. The modified nanoclay was used as a solid sorbent for separation and preconcentration of trace amounts of Pd(II) ions, and a simple, sensitive, and economical method was developed for determination of trace amounts of palladium by flame atomic absorption spectrometry. The sorption of Pd(II) ions was quantitative in the pH range of 1.5-5.0, whereas quantitative desorption occurred with 5.0 mL of a mixture containing 1.0 M thiourea and 1.0 M HCl. The RSD of the method was +/- 2.1% (n = 10; concn = 0.5 microg/mL), and the LOD (3sigma(bl); sigma = SD and bl = blank) was 0.1 ng/mL. The calibration curve was linear for concentrations of 0.5-8.0 microg/mL in the initial solution, and the preconcentration factor was 140. The maximum capacity of the sorbent was 2.4 mg Pd(II)/g modified organo nanoclay. The influences of the experimental parameters, including sample pH, eluant volume, eluant type, sample volume, and interfering ions, on the recoveries of the palladium ion were investigated. The proposed method was applied to the preconcentration and determination of palladium in different samples.  相似文献   

7.
This work assesses the use of modified natural natrolite zeolite as an adsorptive material for the separation and preconcentration of trace amounts of ions. In this work we investigated the potential of modified natural natrolite zeolite for the simultaneous separation and preconcentration of trace amounts of copper and zinc ions. We have developed a simple, rapid, selective, sensitive and economical method for the simultaneous separation and preconcentration of trace amounts of copper and zinc in an aqueous medium using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) as an analytical reagent. The sorption was quantitative in the pH range 7.5 - 9.5, whereas quantitative desorption occurred instantaneously with 5.0 mL of 2 mol L(-1) nitric acid. Linearity was maintained between 0.05 - 6.0 microg mL(-1) for copper and 0.02 - 1.5 microg mL(-1) for zinc in the final solution. Ten replicate determinations of 1.0 microg mL(-1) copper and 0.5 microg mL(-1) zinc in a mixture gave mean absorbances of 0.1687 and 0.2788 with relative standard deviations of +/-1.2% and +/-1.3%, respectively. The detection limits were 0.03 ng mL(-1) for Cu(II) and 0.006 ng mL(-1) for Zn(II) in the original solution (3 sigma(bl)/m). Different parameters, such as the effect of the pH, flow rate, breakthrough volume and interference of a large number of anions and cations, were studied and the proposed method was used for the determination of these metal ions in water as well as standard samples (e.g. Nippon Keikinzoku Kogyo (NKK) CRM, No. 916 and No. 920 aluminum alloy, National Institute for Environment Studies (NIES) No. 1 pepperbush and NIES No. 2 pond sediment). The determination of these metal ions in standard samples showed that the proposed method has good accuracy (recovery > 97%).  相似文献   

8.
Solidified floating organic drop microextraction (SFODME) in combination with high performance liquid chromatography was used for separation/preconcentration and determination of carbamazepine (CBZ) in human plasma and urine samples. Parameters that affect the extraction efficiency such as the type and volume of extraction solvent, ionic strength, sodium hydroxide concentration, stirring rate, sample volume and extraction time, were investigated and optimized. Under the optimum conditions (extraction solvent, 40 μL of 1-undecanol; sodium hydroxide concentration, 1 mol/L; temperature, 50 ℃; stirring speed, 400 r/min; sample volume, 8 mL; sodium chloride concentration, 3% (w/v) and extraction time, 60 min) the calibration curve was found to be linear in the mass concentration range of 0.4-700.0 μg/L. The limit of detection (LOD) was 0.1 μg/L and the relative standard deviation (RSD) for six replicate extraction and determination of carbamazepine at 100 μg/L level was found to be 4.1%. The method was successfully applied to the determination of CBZ in human plasma and urine samples.  相似文献   

9.
Blas M  McCord BR 《Electrophoresis》2008,29(10):2182-2192
This paper details a method for the separation and determination of ten benzodiazepines in urine using CEC-MS(TOF) and an hexyl acrylate-based porous monolith. The TOF mass spectrometer provides an exact mass of protonated benzodiazepines to three decimal places (1-6 ppm). This high selectivity along with the CEC separation, provides an effective method for the identification of benzodiazepines. Linearity is satisfactory for all compounds in the concentration range of 25-500 ng/mL for lorazepam and 12.5-500 ng/mL for the others. The RSDs are between 1.4-2.3% for retention times and 1.1-9.2% for relative areas. Using the monolithic stationary phase, a preconcentration step is achievable and permits an 75-140-fold improvement in sensitivity. This strategy permits the quantification of these drugs down to 1 ng/mL in urine. This method was used for the analysis of benzodiazepines in spiked urine samples.  相似文献   

10.
Multiwalled carbon nanotubes are attractive as sorbents for SPE because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, multiwalled carbon nanotubes were oxidized with concentrated HNO3, and then the oxidized multiwalled carbon nanotubes were modified with 5-(4'-dimethylamino-benzyliden)-rhodanine. The modified multiwalled carbon nanotubes were used as a solid sorbent for separation and preconcentration of trace amounts of Au(III) ions. The sorption of Au(III) ions was quantitative in the pH range of 2.0-5.0, whereas quantitative desorption occurred instantaneously with 5.0 mL 2.0 M Na2S2O3. The eluted solution was aspirated directly into the flame for atomic absorption spectrometry. The proposed method resulted in an enrichment factor of 94. The RSD of the method was +/- 1.11% (n=10, 2.0 microg/mL) and the LOD was 0.15 ng/mL. The calibration curve for Au(III) was linear between 0.53 ng/mL and 36.0 microg/mL in the initial solution, with an R2 value of 0.9999. The sorbent capacity of the modified multiwalled carbon nanotubes was 7.3 mg Au(III)/g sorbent. The influences of the experimental parameters, including sample pH, sample flow rate, eluent volume and flow rate, sample volume, and interference of some ions on the recoveries of the Au ions, were investigated. The proposed method was applied for preconcentration and determination of Au in different samples.  相似文献   

11.
A novel method of online microcolumn separation and preconcentration coupled to inductively coupled plasma atomic emission spectrometry (ICP-AES) with the use of acetylacetone-modified silica gel as packing material was developed for the determination of trace rare earth elements (REEs) in environmental and food samples. The main parameters affecting online separation/preconcentration, including pH, sample flow rate, sample volume, elution and interfering ions, have been investigated in detail. Under the optimized operating conditions, the adsorption capacity values for Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu were 25.65, 23.23, 24.01, 19.40, 22.89, 23.77, 24.40, 23.96, 25.58, 25.15, 24.86, 22.75, 16.05, 24.13, 26.51 and 27.93 mg g(-1), respectively. Detection limits (3sigma) based on three times standard deviations of the blanks by 8 replicates were in the range from 48 pg mL(-1) for Lu to 1003 pg mL(-1) for Sm. With 90 s preconcentration time and 10 s elution time, the enrichment factor was 10 and the sample frequency was 28 h(-1). The precisions (RSDs) obtained by determination of a 250 ng mL(-1) (n = 8) REEs standard solution were in the range from 1.7% for Y to 4.4% for Sm. The proposed method was successfully applied to the determination of trace REEs in pig liver, agaric and mushroom. To validate the proposed method, we analyzed three certified reference materials (GBW07401 soil, GBW07301a sediment, and GBW07605 tea leaves). The determined values were in a good agreement with the certified values. The method is rapid, selective, sensitive and applicable to the determination of trace REEs in biological and environmental samples with complicated matrix effects.  相似文献   

12.
For the first time, a capillary electrophoretic (CE) method with sample stacking induced by a reverse migrating pseudostationary phase (SRMP) technique has been developed and validated for sensitive determination of phenobarbital (PB) and its p-hydroxyphenobarbital (PHPB) metabolite in rat urine samples. Separation and determination were optimized on a fused-silica capillary with a total length of 50 cm (effective length 40 cm) and 75 μm ID. The microemulsion background electrolyte consisted of 0.8% (v/v) ethyl acetate, 6.6% (v/v) butan-2-ol, 1.0% (v/v) acetonitrile, 2.0% (w/v) sodium n-dodecyl sulfate (SDS), and 89.6% (v/v) of 7.5 mM ammonium formate at pH 8. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with changing the voltage with an intermediate polarity switching step. For practical application, a solid-phase extraction (SPE), C(18) sorbent with n-hexane/ethyl acetate (1?:?1%, v/v) as the elution solvent was used for sample purification and concentration. The SPE method gave good extraction yields for all the analytes, with absolute recovery values of 96.9% and 99.1% for PB and PHPB, respectively. The regression equations for PB and PHPB showed excellent linearity over a concentration range of 55-1386 ng mL(-1) for PB and PHPB (r = 0.998). The developed microemulsion electrokinetic capillary chromatography (MEEKC) method for separation of the studied compounds with SRMP as the electrophoretic preconcentration technique allowed detection limits in urine samples at 16.8 ng mL(-1) for PB and PHPB which are 15-fold lower than the reported CE method in the literature. The precision results, expressed by the intra-day and inter-day relative standard deviation (RSD) values range from 3.6 to 7.1% (repeatability) and from 3.2 to 7.2% (intermediate precision) for PB and PHPB, respectively, which were in line with Food and Drug Administration (FDA) criteria.  相似文献   

13.
A simple and rapid chelating-resin-packed column has been developed for preconcentration of trace indium in biological samples. A large-sized urine sample was pumped through a minicolumn at a flow rate of 1.0 mL/min by using a peristaltic pump, and the eluents were analyzed using graphite furnace atomic absorption spectrometry (GFAAS). Four commercially available chelating resins including Chelex-100, Amberlite IRC-50, Duolite GT-73, and Celite 545-AW were studied for evaluating the indium sorption performance. Several parameters, such as pH, resin amount, eluent volume, eluent flow rate, and the volume of sample, were investigated and optimized. A 100-200 mL of the sample was loaded into a column containing 1.2 g of wet Chelex-100 and subjected to the ion-exchange procedure. The retained analytes were eluted with 5.0 mL of 0.1 M HNO(3) and quantified by GFAAS. The correlation coefficient in the range 10-250 ng/mL was of 0.9994. The limit of detection of the proposed method was 2.75 ng/mL. The method developed was successfully applied to analysis of spiked urine samples with good recoveries of 93-103% (n = 6) and reproducibility (relative standard deviation < 4.9%). The accuracy of procedure was confirmed by indium determination in spiked certified reference materials.  相似文献   

14.
Xu X  Su R  Zhao X  Liu Z  Li D  Li X  Zhang H  Wang Z 《Talanta》2011,85(5):2632-2638
A simple method based on simultaneous microwave-assisted derivatization and ionic liquid-based dispersive liquid-liquid microextraction (IL-based DLLME) is proposed for the derivatization, extraction and preconcentration of formaldehyde in beverage samples prior to the determination by high-performance liquid chromatography (HPLC). Formaldehyde was in situ derivatized with 2,4-dinitrophenylhydrazine (DNPH) and simultaneously extracted and preconcentrated by using microwave-assisted derivatization and IL-based DLLME in a single step. Several experimental parameters, including type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of DNPH, pH of sample solution, and ionic strength were evaluated. When the microwave power was 120 W, formaldehyde could be derivatized and extracted simultaneously only within 90 s. Under optimal experimental conditions, good linearity was observed in the range of 0.5-50 ng/mL with the correlation coefficient of 0.9965, and the limit of detection was 0.12 ng/mL. The proposed method was applied to the analysis of different beverage samples, and the recoveries of formaldehyde obtained were in the range of 84.9-95.1% with the relative standard deviations lower than 8.4%. The results showed that the proposed method was a rapid, convenient and feasible method for the determination of formaldehyde in beverage samples.  相似文献   

15.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

16.
A sensitive and rapid method based on alcohol‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Benken design, respectively. According to the Plackett–Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1‐octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples.  相似文献   

17.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometric determination with arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was success-fully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

18.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometry determination with Arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was successfully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

19.
A new preconcetration method of dispersive liquid-liquid microextraction (DLLME) was developed for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. DLLME technique was successfully used as a sample preparation method. In this preconcentration method, an appropriate mixture of extraction solvent, disperser solvent was injected rapidly into an aqueous solution containing Sm, Eu, Gd and Dy after complex formation using chelating reagent of the 1-(2-pyridylazo)-2-naphthol (PAN). After phase separation, 0.5 mL of the settled phase containing enriched analytes was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The main factors affected the preconcentration of Sm, Eu, Gd and Dy were extraction and dispersive solvent type and their volume, extraction time, volume of chelating agent (PAN), centrifuge speed and drying temperature of the samples. Under the best operating condition simultaneous preconcentration factors of 80, 100, 103 and 78 were obtained for Sm, Eu, Gd and Dy, respectively.  相似文献   

20.
A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of mercury as its 2,2' diamino-4,4' bithiazole (DABTZ) complex by using octadecylsilica cartridges and spectrophotometry is presented. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of DABTZ, type and least amount of eluent for elution of mercury complex from cartridges, break through volume and limit of detection were evaluated. Also the effects of various cationic and anionic interferences on percent recovery of mercury were studied. Average extraction efficiency > 90% was obtained by elution of the cartridge with minimal amount of solvent in the presence of interferences. A preconcentration factor of 152 and a detection limit of 10.92 ng mL(-1) were obtained. The method was applied to the recovery and determination of mercury in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号