首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Electrospray ionization (ESI) of solutions containing adenine and AgNO(3) yields polymeric [Ad(x)+ Ag(y)-zH]((y-z)+) species. Density functional theory (DFT) calculations have been used to examine potential structures for several of the smaller ions while multistage mass spectrometry experiments have been used to probe their unimolecular reactivity (via collision-induced dissociation (CID)) and bimolecular reactivity (via ion-molecule reactions with the neutral reagents acetonitrile, methanol, butylamine and pyridine). DFT calculations of neutral adenine tautomers and their silver ion adducts provide insights into the binding modes of adenine. We find that the most stable [Ad + Ag](+) ion does not correspond to the most stable neutral adenine tautomer, consistent with previous studies that have shown that transition metal ions can stabilize rare tautomeric forms of nucleobases. Both the charge and the stoichiometry of the [Ad(x)+ Ag(y)-zH]((y-z)+) complexes play pivotal roles in directing the types of fragmentation and ion-molecule reactions observed. Thus, [Ad(2)+ Ag(2)](2+) is observed to dissociate to [Ad + Ag](+) and to react with butylamine via proton transfer, while [Ad(2)+ Ag(2)- H](+) fragments via loss of neutral adenine to form the [Ad + Ag(2)- H](+) ion and does not undergo proton transfer to butylamine. DFT calculations on several isomeric [Ad(2)+ Ag(2)](2+) ions suggest that planar centrosymmetric cations, in which two adjacent silver atoms are bridged by two N7H adenine tautomers via N(3),N(9)-bidentate interactions, are the most stable. The [Ad + Ag(2)-H](+) ion adds two neutral reagents in ion-molecule reactions, consistent with the presence of two vacant coordination sites. It undergoes a silver atom loss to form the [Ad + Ag - H](+) radical cation, which in turn fragments quite differently to the even electron [Ad + Ag](+) ion. Several other pairs of radical cation/even electron adenine-silver complexes were also found to undergo different fragmentation reactions.  相似文献   

2.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

3.
A series of isomeric 2-aryl-6,6-dimethyltetrahydro-5-quinolinones (set I) and 2-aryl-7,7-dimethyltetrahydro-5-quinolinones (set II) were studied under positive ion electron ionization (EI) and electrospray ionization (ESI) techniques. Under EI conditions, the molecular ions were found to be less stable in set I isomers, and they resulted in abundant fragment ions, i.e., [M-CH(3)](+), [M-CO](+.), [M-HCO](+), [M-(CH(3),CO)](+), and [M-(CH(3),CH(2)O)](+), when compared with set II isomers. In addition, the set I isomers showed specific fragment ions corresponding to [M-OH](+) and [M-OCH(3)](+). The retro-Diels-Alder (RDA) product ion was always higher in set II isomers. The ESI mass spectra produced [M + H](+) ions, and their decomposition showed favorable loss of CH(3) radical, CH(4) and C(2)H(6) molecules in set I isomers. The set II isomers, however, showed predominant RDA product ions, and specific loss of H(2)O. The selectivity in EI and ESI was attributed to the instability of set I isomers by the presence of a gem-dimethyl group at the α-position, and it was supported by the data from model compounds without a gem-dimethyl group. Density functional theory (DFT) calculations successfully corroborated the fragmentation pathways for diagnostic ions. This study revealed the effect of a gem-dimethyl group located at the α-position to the carbonyl having aromatic/unsaturated carbon on the other side of the carbonyl group.  相似文献   

4.
建立了高效液相色谱-电喷雾飞行时间质谱联用技术快速鉴别高沸点多环芳烃的方法。多环芳烃经色谱柱分离后,通过柱后添加AgNO3溶液诱导其在电喷雾离子源中电离,生成多环芳烃[M]+及其复合[M+Ag]+和[2M+Ag]+特征离子,根据所获得的各特征离子的精确分子量和分子式,可实现多环芳烃类化合物的快速鉴别。将本方法用于美国环保局(USEPA)规定的16种优先控制多环芳烃及原油中多环芳烃类化合物的分析鉴别,结果表明,四环以上的PAHs质谱信号良好,说明本方法适用于四环以上的高分子量、高沸点多环芳烃类化合物的分析鉴别。  相似文献   

5.
A number of copper salts, Cu(OOCCH(3))(2), Cu(ClO(4))(2), Cu(NO(3))(2), CuCl(2) and CuSO(4) have been tested for their ability to form binuclear copper-caffeine complexes. The electrospray ionization (ESI) mass spectra of methanol solution containing caffeine and CuCl(2) or CuSO(4) show signals of two copper atom containing ions, so the signals correspond to binuclear complexes: [2Caf + Cu(2)SO(4)](+), [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+), [2Caf + Cu(2)Cl(2)](+) and [2Caf + Cu(2)Cl(3)](+). Sulfate and chloride anion are characterized by charge densities higher than those of the carboxylate, nitrate and perchlorate anion. Thus, due to the electrostatic forces, the binuclear complexes containing SO(4)(2-) or Cl(-) can survive the transfer from solution to the gas phase and then can successfully be observed on ESI mass spectra. The ion [2Caf + Cu(2)Cl(3)](+) is present in solution and could be detected when using methanol/chloroform as solvent. The ions [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+) and [2Caf + Cu(2)Cl(2)](+) are formed from the [2Caf + Cu(2)Cl(3)](+) ion (by subsequent loss of Cl atoms) on transfer from the solution to the gas phase or in the gas phase. The ion [2Caf + Cu(2)](+) does not contain a bridging agent, thus it is reasonable to assume that it contains a Cu-Cu bond.  相似文献   

6.
The mechanism of propene loss from the metastable [M + D](+) ions of isomeric 2-, 3-, and 4-n-propoxypyridines and the related isopropoxypyridines has been examined by chemical ionization (CI) and tandem mass spectrometry in combination with deuterium labeling. The [M + D](+) ions were generated with CD(3)OD, CD(3)CN, (CD(3))(2)CO, or pyrrole-D(5) (listed in order of increasing proton affinity) as the CI reagent. The results reveal that the deuteron added in the CI process is not interchanged with the hydrogen atoms of the propyl group prior to propene loss from the metastable [M + D](+) ions of the propoxypyridines. The site selective labeling of the alpha-, beta-, or gamma-position of the propyl group indicates that the [M + D](+) ions of 2-n-propoxypyridine expel propene with formation of an ion-neutral complex composed of a propyl carbenium ion and 2-pyridone. By contrast, the [M + D](+) ions of 3-n-propoxypyridine expel propene by: (1) Formation of ion-neutral complexes, and (2) a conventional 1,5-hydride shift from the beta-position of the n-propyl group to the ring and/or a 1,2-elimination type process. For the 4-isomer, the results suggest the occurrence of propene loss by a 1,2-elimination in addition to the intermediate formation of ion-neutral complexes. Loss of propene with one deuterium atom is the only reaction of the [M + D](+) ions of the isopropoxypyridines labeled at the alpha-position of the isopropyl group. The results for the isopropoxypyridines labeled with three deuterium atoms at the beta-position are consistent with: (1) The loss of propene by ion-neutral complex formation and the occurrence of a substantial isotope effect in the subsequent proton/deuteron transfer within the complex, and/or (2) the loss of propene by a 1,2-elimination type reaction.  相似文献   

7.
Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) using silver nitrate as a post-column reagent has been used for the determination of 10 polycyclic aromatic hydrocarbons (PAHs) in river water. In this method, after all the PAHs were separated by reversed-phase liquid chromatography, analytes formed complexes with silver cation by mixing with silver nitrate solution. The complexes then transfer the molecular ion, [M]+, of the PAHs by charge transfer using in source collision-induced dissociation. The positive ion ESI mass spectra of all PAHs tested in this study showed [M]+ as the base peak and abundant [M+Ag]+, [2M+Ag]- with very weak or no [2M+Ag]+. For the sample extraction, several solid-phase extraction parameters using the blue-chitin column were optimized. The limits of detection (S/N=3) of all PAHs for the spiked river water sample ranged from 0.001 to 0.03 ng/ml, and the detector responses were linear up to I ng/ml (correlation coefficients > or =0.0998). Repeatability and reproducibility were in the range from 4.3 to 6.8% and from 6.2 to 9.5%, respectively.  相似文献   

8.
Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) methods were used to study open-chain piperazine-containing ligands (L) and their complexes formed with transition-metal salts. ESI and MALDI measurements were performed with a Fourier transform ion cyclotron resonance (FT-ICR) and a time-of-flight (TOF) mass spectrometer, respectively. Only singly charged complexes, between one ligand and one or several metal ions, were formed in the ESI measurements. Because the net charge was always one, one or several counterions were attached to the complex. Under ESI conditions, the complexes formed between the ligands and metal (Co, Ni, Cu, and Cd) salts were [L + M + X](+), [L + H + M + X(2)](+) and [L + M(2) + X(3)](+) (M = metal ion, X = counterion). In collision induced dissociation reactions the [L + H + M + X(2)](+) complexes easily eliminated one proton and one counterion. Fragmentation pathways were more dependent on the metal ion than the ligand, and elimination of the second counterion occurred with one proton from copper and nickel complexes and with one proton and one hydrogen from cobalt complexes. Differences in the fragmentation of the complexes could be due to electronic configuration of the metal ion. In the MALDI measurements the ratio between the [L + H](+) and [L - H](+) ions varied with the matrix. Fragmentation of the ligands through elimination of 2-methylpyridine end groups occurred with the aromatic matrices containing carboxylic acid and hydroxyl substituents. Ionization of the complexes was not successful with MALDI as the matrix molecules were also attached to the complexes.  相似文献   

9.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

10.
Mono- and binuclear complexes of N,N-dimethylformamide (DMF) with chlorides of the divalent, late 3d metals M = Co, Ni, Cu, and Zn are investigated by means of electrospray ionization (ESI). Specifically, ESI leads to monocations of the type [(DMF)(n)MCl](+) and [(DMF)(n)M(2)Cl(3)](+), of which the species with n = 2 and 3 were selected for in-depth studies. The latter include collision-induced dissociation experiments, gas-phase infrared spectroscopy, and calculations using density functional theory. The mononuclear complexes [(DMF)(n)MCl](+) almost exclusively lose neutral DMF upon collisional activation with the notable exception of the copper complex, for which also a reduction from Cu(II) to Cu(I) concomitant with the release of atomic chlorine is observed. For the dinuclear clusters, there exists a competition between loss of a DMF ligand and cluster degradation via loss of neutral MCl(2) with decreasing cluster stability from cobalt to zinc. For the specific case of [(DMF)(n)ZnCl](+) and [(DMF)(n)Zn(2)Cl(3)](+), ion-mobility mass spectrometry indicates the existence of two isomeric cluster ions in the case of [(DMF)(2)Zn(2)Cl(3)](+) which corroborates parallel theoretical predictions.  相似文献   

11.
Resveratrol is a polyphenolic compound found in plants and human foods which has shown biological activities including chemoprevention, acting through a mechanism which involves the reduction of Cu(II) species. By electrospray ionization (ESI) mass spectrometry we have produced and detected the resveratrol-copper complexes [Resv+Cu](+), [Resv+Cu+H(2)O](+) and [2Resv+Cu](+) by using a resveratrol/CuSO(4) solution in CH(3)CN/H(2)O. The most stable structures of the detected complexes have been calculated at the B3LYP/6-311G(d) level of theory. Resveratrol interacts with the copper ion through nucleophilic carbon atoms on the aromatic ring and the alkenyl group. The fact that only singly charged ions were observed implies that Cu(II) is reduced to Cu(I) in the ESI process. For investigating the structure-reactivity correlation, we have carried out a similar study on the synthetic analogue dihydroresveratrol (DHResv). For the latter only the [DHResv+Cu](+) complex has been detected.  相似文献   

12.
The derivatized 19- and 20-membered macrocyclic thio crowns 3,6,9,12,15,18-hexathianonadecanol C(13)H(26)OS(6) (19-aneS6-OH) (1) and 3,6,9,13,16,19-hexathiacycloicosanol C(14)H(28)OS(6) (20-aneS6-OH) (2) have been synthesized by [1 + 1] cyclization in about 30% yield. The ligands 1 and 2 react readily at room temperature with different silver(I) salts in water and in organic solvents to form in quantitative yields the complexes [Ag(19-aneS6-OH)](+) (3) and [Ag(20-aneS6-OH)](+) (4) for which crystals of X-ray quality were grown by slow diffusion of diethylether into methanol. [Ag(19-aneS6-OH)][CF(3)SO(3)] crystallizes in the triclinic space group P&onemacr; with Z = 2, a = 10.760(1), b = 10.853(2) and c = 11.326(2)?, and alpha = 78.73(1), beta = 73.47(1), and gamma = 74.99(1) degrees. [Ag(20-aneS6-OH)][BF(4)] also crystallizes in the triclinic space group P&onemacr; with Z = 4. The unit cell constants were determined with a = 10.076(4), b = 10.525(3), and c = 22.135(8)?, alpha = 93.32(2), beta = 102.43(2), and gamma = 100.32(2) degrees. The complex cations [Ag(19-aneS6-OH)](+) and [Ag(20-aneS6-OH)](+) are coordinated through only four sulfur atoms; thus, a distorted tetrahedral coordination geometry is exhibited. In addition we found a highly asymmetric Ag-S bond lengths distribution throughout all complex cations. The stability constants of [Ag](+) with 1 and 2 and, for comparison with [18-aneS6] (5), have been determined in methanol by potentiometric [Ag](+) measurements. Log K values for the formation of 3, 4, and [Ag(18-aneS6](+) (6) are 12.04 +/- 0.19, 11.49 +/- 0.15, and 12.67 +/- 0.13 respectively. Owing to a comparable macrocyclic effect, the similar log K values are reasonable but, since 6 coordinates octahedrally, not expected. (1)H and (13)C NMR investigations at various temperatures give evidence for fluxional coordinative behavior between all six sulfur atoms in solution. Consequently [Ag(19-aneS6-OH)](+), [Ag(20-aneS6-OH)](+), and [Ag(18-aneS6](+) seem to exhibit principally the same solution structures although the solid structures are very different.  相似文献   

13.
Febrifugine is an alkaloid with potent antimalarial activity isolated from Dichroa febrifuga and Hydrangea umbellate, and it exists naturally with its diastereomeric component, isofebrifugine. Here we report the differentiation of diastereomeric synthetic precursors of isofebrifugine (1, cis) and febrifugine (2, trans) and a structurally similar model diastereomeric pair without a halogen substituent (3 and 4) by electrospray ionization (ESI) tandem mass spectrometry. Compounds 1-4 contain a tert-butoxycarbonyl (BOC) substituent, and the collision-induced dissociation (CID) spectra of the [M+H](+), [M+Na](+) and [M+Li](+) ions of 1-4 include the expected product ions corresponding to the loss of C(4)H(8) (isobutene) and of C(5)H(8)O(2) (BOC-H). Loss of C(5)H(8)O(2) is dominant in cis isomers (1 and 3) and/or loss of C(4)H(8) ions is dominant in trans isomers (2 and 4). The decomposition of [M+H](+) ions shows stereoselectivity in the formation of the [M+H-(BOC-H)-C(3)H(5)OBr](+) and [M+H-(BOC-H)-C(6)H(5)CH(2)OH](+) ions. The [M+Cat](+) ions (where Cat = Na or Li) additionally show loss of NaBr and HBr from [M+Cat-(BOC-H)](+), and these product ions are constantly more abundant in cis isomers than in trans isomers. The stereoselectivity for the product ion corresponding to the loss of [(BOC-H)+C(3)H(5)OBr] from [M+H](+) ions differs from that from [M+Cat](+) ions.  相似文献   

14.
For detection and differentiation of two types of triterpenoid saponins based on different aglycons of the lupane and oleanane skeleton from the roots of Pulsatilla chinensis (Bunge) Regel, the silver ion was introduced and electrospray ionization multi-stage tandem mass spectrometry was applied to analyze eleven triterpenoid saponin silver complexes. The quasi-molecular ion [M+Ag](+) was observed in the full-scan MS spectra of all the silver complexes. The MS(2) data of the [M+Ag](+) ion provided structural information on the sugar sequence of the oligosaccharide chains and the aglycon of the saponins. There are two patterns in the cleavage pathway of oleanane-type saponins. One is elimination of the sugar chain and subsequent loss of the carboxylic group which is the same as the cleavage of lupine-type saponins. The other is loss of the distinguishing ions at m/z 72 and 28 (C(2)H(4)) followed by loss of the carboxylic group. Diagnostic fragmentation pathways of the silver complexes of the saponins allow successful identification of the two types of saponins from the roots of Pulsatilla chinensis (Bunge) Regel.  相似文献   

15.
Porphyrin derivatives having a galactose or a bis(isopropylidene)galactose structural unit, linked by ester or ether bonds, were characterized by electrospray tandem mass spectrometry (ES-MS/MS). The electrospray mass spectra of these glycoporphyrins show the corresponding [M + H](+) ions. For the glycoporphyrins with pyridyl substituents and those having a tetrafluorophenyl spacer, the doubly charged ions [M + 2H](2+) were also observed in ES-MS with high relative abundance. The fragmentation of both [M + H](+) and [M + 2H](2+) ions exhibited common fragmentation pathways for porphyrins with the same sugar residue, independently of the porphyrin structural unit and type of linkage. ES-MS/MS of the [M + H](+) ions of the galactose-substituted porphyrins gave the fragment ions [M + H - C(2)H(4)O(2)](+), [M + H - C(3)H(6)O(3)](+), [M + H - C(4)H(8)O(4)](+) and [M + H - galactose residue](+). The fragmentation of the [M + 2H](2+) ions of the porphyrins with galactose shows the common doubly charged fragment ions [porphyrin + H](2+), [M + 2H - C(2)H(4)O(2)](2+), [M + 2H - C(4)H(8)O(4)](2+), [M + 2H - galactose residue](2+) and the singly charged fragment ions [M + H - C(3)H(6)O(3)](+) and [M + H - galactose residue](+). The fragmentation of the [M + H](+) ions of glycoporphyrins with a protected galactosyl residue leads mainly to the ions [M + H - CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2) - CO](+), [M + H - C(10)H(16)O(4)](+) and [M + H - protected galactose](+). The doubly charged ions [M + 2H](2+) fragment to give the doubly charged ions [porphyrin + H](2+) and the singly charged ions [M + H - protected galactose residue](+) and [M + H - CO(CH(3))(2)](+). For the porphyrins where the sugar structural unit is linked by an ester bond, [M + 2H](2+), ES-MS/MS showed a major and typical fragmentation corresponding to combined loss of a sugar structural unit and further loss of water, leading to the ion [M + 2H - sugar residue - H(2)O](2+), independently of the structure of the sugar structural unit. These results show that ES-MS/MS can be a powerful tool for the characterization of the sugar structural unit of glycoporphyrins, without the need for chemical hydrolysis.  相似文献   

16.
Copper-induced oligomerization of peptides: a model study   总被引:1,自引:0,他引:1  
In this work, copper-binding of the tetraglycine peptide (Gly-Gly-Gly-Gly) was studied by electrospray ionization mass spectrometry. Experiments were performed under alkaline conditions, in the presence of ethanolamine (pH 10.95). We observed that the presence of copper(II) ions induces the aggregation of the peptide and the formation of copper-bound complexes with higher molecular mass is favored, such as the oligomer complexes [3M+2Cu-3H](+) and [4M+3Cu-5H](+). At 1:1 peptide-copper(II) ion ratio, the singly charged [3M+2Cu-3H](+) oligomer complex is the base peak in the mass spectrum. Metal ion-induced oligomer-ization of neurotoxic peptides is well known in the literature; however, there are very few examples in which such oligomerization was directly observed by mass spectrometry. Our results show that application of short peptides can be useful to study the -mechanism of metal ion binding and metal ion-induced oligomerization of peptides.  相似文献   

17.
The transition metal (M=Fe, Co, Ni, Cu, Zn, Cd and Hg) complexes of 2- acetylbenzimidazolethiosemicarbazone (L(1)) and 1-methyl 2-acetylbenzimidazole-thiosemicarbazone (L(2)) are analyzed by MALDI using HCCA, THP, MMNPD and DMN as the matrices. All the MALDI spectra are clean without any contribution from the complex ions resulted by multiple proton addition/removal. All the complexes, except Cu, irrespective of the matrix used, show 1:2 complex ions wherein two ligands (neutral or deprotonated) complex with the metal ion depending on the nature and stable oxidation state of the central metal ion viz., [M + 2L - 2H](+) ion for Fe and Co complexes (+3 oxidation state) and [M + 2L - H](+) ion for Ni, Zn, Cd and Hg (+2 oxidation state). The Cu complex show 1:1 complex ion corresponding to [2M + 2L - 2H](+) ions. When HCCA is used as a matrix, the complex ions due to ligand exchange by matrix are also found, and this process is relatively more if a neutral ligand is bound to the metal ion in the original complex ion. The type of complex ions found under MALDI experiments are similar to those found under ESI experiments. However, the complex ions due to reduction of Cu are found only in the MALDI analysis of Cu complexes.  相似文献   

18.
We compared the tandem mass spectra of a range of native and acetylated Ag(+) cationized peptides to determine the influence of the derivatization step on the abundance of the [b(n) + 17 + Ag](+) product ions. Using tripeptides, the smallest for which the mechanisms to generate [b(2) - 1 + Ag](+) and [b(2) + 17 + Ag](+) products are both operative, we found that in most cases acetylation causes an increase in the abundance of the C-terminal rearrangement ion, [b(2) + 17 + Ag](+), relative to the rival N-terminal rearrangement ion, [b(2) - 1 + Ag](+). The presence of a free amino group to bind to the metal ion significantly influences the relative abundances of the product ions. We propose a mechanism for the formation of the [b(n) + 17 + Ag](+) that is based on the formation of a five-membered oxazolidin-5-one and tetrahedral carbon intermediate that may collapse to a peptide upon release of CO and an imine, aided by the fact that the ring formed during C-terminal rearrangement is both a hemiacylal and hemiaminal. We also identified an influence of amino acid sequence on the relative abundances of the [b(n) + 17 + Ag](+) and [b(n) - 1 + Ag](+) product ions, whereby bulky substituents located on the alpha-carbon of the amino acid to the C-terminal side of the cleavage site apparently promote the formation of the [b(n) + 17 + Ag](+) product over [b(n) - 1 + Ag](+) when the amino acid to the N-terminal side of the cleavage site is glycine. The latter ion is the favored product, however, when the bulky group is positioned on the alpha-carbon of the amino acid to the N-terminal side of the cleavage site.  相似文献   

19.
A non-aqueous reversed-phase liquid chromatographic method coupled to electrospray ionisation (ESI) tandem mass spectrometry was developed for the analysis of triacylglycerols (TGs). The synthetic TGs studied were separated according to their equivalent carbon number with a gradient of methanol (containing 0.01% (v/v) formate adjusted to pH 5.3 with ammonia) and chloroform. ESI mass spectra of TGs yielded positive ion current signals for [M + NH(4)](+) and [M + NH(4)-RCOONH(4)](+). The mass spectra also showed signals believed to arise from [M + K](+). Collision-induced dissociation (CID) of the [M + NH(4)](+) precursor ion yielded [M + NH(4) - RCOONH(4)](+), [RCO + 74](+) and [RCO](+) product ions as aids for the structural elucidation of the TGs. In addition, [RCO - 18](+) and small amounts of [RCO - 2](+) product ions were also found. The latter ions were observed only for TGs containing unsaturated fatty acids. CID of ammoniated 1-stearoyl-2-oleoyl-3-linoleoyl-glycerol (18:0/18:1/18:2) indicated that neutral loss of the sn-2 fatty acid was energetically less favourable than loss of the fatty acid from the sn-1 or sn-3 position.  相似文献   

20.
The relative binding strength of a series of terpyridine metal complexes of the type [M(II)L(2)](+) was investigated by using variable laser intensities in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A model terpyridine ligand, 4'-(1,4,7-trioxa-octyl)-2,2':6',2"-terpyridine, was prepared and complexed with a series of transition metal ions including cadmium, cobalt, copper, iron, manganese, nickel and ruthenium. The relative binding strength of these complexes can be obtained by measuring MALDI mass spectra of the prepared compounds at different laser intensities. The ratio of the signal intensities belonging to the ligand [LH](+) and the complex [ML(2)](+) ([LH](+) /[ML(2)](+)) depends on the laser intensity utilized for the spectrum acquisition. By considering an [LH](+)/[ML(2)](+) ratio > 10 as the point of complete complex dissociation, it is possible to establish a row of complex stabilities depending on the kind of metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号