首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0–1 atm, the NC thickness is smoothly varied in the range L = 140–1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.  相似文献   

2.
It is demonstrated that the velocity-selective optical pumping/saturation resonances of the reduced absorption in a Rb vapor nanocell with thickness L = λ, 2λ, and 3λ (resonant wavelength λ = 780 nm) allow for the complete elimination of crossover (CO) resonances. We observe well-pronounced resonances corresponding to the F g = 3 → F e = 2, 3, and 4 hyperfine transitions of the 85Rb D2 line with line widths close to the natural width. A small CO resonance located midway between F g = 3 → F e = 3 and F g = 3 → F e = 4 transitions appears only for L ≥ 4λ. The D2 line (λ = 852 nm) in a Cs nanocell exhibits a similar behavior. From the amplitude ratio of the CO and VSOP resonances, it is possible to determine the thickness of the column of alkali vapor in the range of 1–1000 μm. The absence of the CO resonances for nanocells with L ~ λ is attractive for the frequency reference application and for studying the transitions between the Zeeman sublevels in external magnetic fields.  相似文献   

3.
Features of the effect of Faraday rotation (the rotation of the radiation polarization plane) in a magnetic field of the D 1 line in Cs atomic vapor in a nanocell with the thickness L varying in the range of 80–900 nm have been analyzed. The key parameter is the ratio L/λ, where λ = 895 nm is the wavelength of laser radiation resonant with the D 1 line. The comparison of the parameters for two selected thicknesses L = λ and λ/2 has revealed an unusual behavior of the Faraday rotation signal: the spectrum of the Faraday rotation signal at L = λ/2 = 448 nm is several times narrower than the spectrum of the signal at L = λ, whereas its amplitude is larger by a factor of about 3. These differences become more dramatic with an increase in the power of the laser: the amplitude of the Faraday rotation signal at L = λ/2 increases, whereas the amplitude of the signal at L = λ almost vanishes. Such dependences on L are absent in centimeter-length cells. They are inherent only in nanocells. In spite of a small thickness, L = 448 nm, the Faraday rotation signal is certainly detected at magnetic fields ≥0.4 G, which ensures its application. At thicknesses L < 150 nm, the Faraday rotation signal exhibits “redshift,” which is manifestation of the van der Waals effect. The developed theoretical model describes the experiment well.  相似文献   

4.
The optical constants of CoNi films with magnetic properties that are nonuniform across their thickness are determined in reflected light by two methods, viz., optical and magnetooptical measurements. The values of the parameters L=λ/4πk and Z 0=λ/8n, one of which (specifically, the one which has the smaller value at a given value of λ) determines the depth of formation of reflective magnetooptical effects (l mo) according to the current theories, are calculated on the basis of the values obtained for the optical constants n and k of the films (λ is the wavelength of the light used, and n and k are the refractive index and the absorption coefficient of the magnet). It is established for the CoNi films investigated that l mo is determined by L and varies from about 200 to 300 ? in the range 0.33 μm⩽λ⩽0.83 μm. In CoNi films, which are inhomogeneous across their thickness and are characterized by significant variation of the magnetic properties over distances ∼l mo, variation of the form of the magnetization curves determined by measuring the equatorial Kerr effect is observed as λ increases. Zh. Tekh. Fiz. 68, 69–72 (February 1998)  相似文献   

5.
It has been demonstrated that the use of the λ/2 method allows one to effectively investigate individual atomic levels of the D 2 line of Cs (with the most complicated spectrum among all alkali metals) in strong magnetic fields up to 7 kG. The method is based on strong narrowing of the absorption spectrum (which provides sub-Doppler resolution) of a cesium-filled thin cell with the thickness L equal to a half-wavelength (L = λ/2) of the laser radiation (λ = 852 nm) resonant with the D 2 line. In particular, the λ/2 method has allowed us to resolve 16 atomic transitions (in two groups of eight atomic transitions each) and to determine their frequency positions, fixed (within each group) frequency slopes, the probability characteristics of the transitions, and other important characteristics of the hyperfine structure of Cs in the Paschen-Back regime. Possible applications are mentioned. Two theoretical models have been implemented. The values of the magnetic field have been indicated at which the models describe the experiment well.  相似文献   

6.
On an example of the D2-line of the Rb atoms the work of the frequency reference of atomic transitions is demonstrated, based on the application of the spectrum of a selective reflectance (SR) from the boundary of atom vapors with the use of nano-cell (NC) with the thickness L ~ λ/2, where λ is the laser wavelength equal to 780 nm. When changing the thickness of the nano-cell near the thickness L ~ λ/2, we observe the inversion of sign of the SR slope profile which is positive when L < λ/2 and negative when L > λ/2. In the case when the incidence angle of the laser beam on the surface of the nano-cell is close to the normal, in real-time it is possible to form the derivative of the SR which represents a resonance peak with ~35 MHz spectral linewidth and located at the atomic transition. The phenomenon of oscillation of the sign of slope while changing the nano-cell thickness from L ~ λ/2 up to L ~ 3/2λ is demonstrated. The practical application of the SR is noted.  相似文献   

7.
We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L ~ λ1,2/2 filled with Rb and Cs atoms, where λ1 = 780 nm and λ2 = 852 nm are the wavelengths resonant with the D2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30–40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne–Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.  相似文献   

8.
It is shown that high-contrast resonance of electromagnetically induced transparency (EIT) in a ladder Ξ-system of 5S 1/2-5P 3/2-5D 5/2 levels can be formed in optical cells containing a column of rubidium vapor with thickness L in an interval of 100 nm ≤ L ≤ 780 nm. Using bichromatic laser radiation with certain parameters, an 83% contrast of the EIT resonance (or dark resonance, DR) has been achieved for a vapor column thickness of L = 780 nm. An important condition for the formation of high-contrast DR is that the frequency of the coupling laser radiation must be resonant with the frequency of the corresponding 5P 3/2-5D 5/2 transition (for the probe radiation frequency scanned over the 5S 1/2-5P 3/2 transition). It is also shown that a DR can be formed at a record small vapor column thickness of L ≈ 100 nm. Expressions that can be used to estimate the expected DR width at small L values are presented.  相似文献   

9.
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D1 line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D1 line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocell had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power PL ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the Fg = 3 → Fe = 2 transition of the 85Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.  相似文献   

10.
The two-photon absorption of the solid solution of 3,4-benzopyrene in methyl polymetacrylate, induced by a tunable dye laser has been investigated. An absorption spectrum in the range of 530–750 nm has been obtained. The dependence of the fluorescence intensity IF upon the laser power IF, IFλIkL and the relation k=k(λ) has been i investigated.  相似文献   

11.
We propose a technique which we call “L = λ Zeeman technique” (LZT) for investigation of the transitions between the Zeeman sublevels of the hfs structure of alkali metal atoms in external magnetic fields. The technique is based on the employment of a nanocell with the thickness of the Rb atom vapor column equal to the wavelength of the laser radiation, 780 nm, resonant with the atomic rubidium D2 transition. At the laser intensities of about 1 mW/cm2 in the transmission spectrum of the nanocell narrow (~ 30 MHz) resonant peaks of reduced absorption appear localized exactly on the atomic transitions. In magnetic fields these peaks are split and their amplitudes and frequency positions depend on the magnetic field strength. The theoretical model well describes the experimental results.  相似文献   

12.
Vacuum ultraviolet luminescence of Er3+ ions in LiYF4 and BaY2F8 crystals has been investigated. It is revealed that under excitation by 193 nm radiation from an ArF excimer laser the interconfigurational 5d–4f radiative transitions in Er3+ ions are observed. It is shown that from the LiYF4:Er crystal only the spin-forbidden luminescence (λ = 165 nm) is detected, whereas both the spin-forbidden (λ = 169 nm) and spin-allowed (λ = 160.5 nm) components are observed from the BaY2F8:Er crystal.  相似文献   

13.
Luminescence of dense Ar–Xe–CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the В–Х transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D–X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10–16 of В–Х transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10–4 cm–1 of В–Х transition emission of the ХеCl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.  相似文献   

14.
We report a study at low temperature of the time resolved luminescence of CdS, excited by two photon absorption. Concerning the so called EHP-LO and P bands, we confirm our results previously obtained on CdSe[1, 2]. (a) At high excitation a broad band (peak position at λ > 495 nm) occurs due to radiative recombination in an electron hole plasma, assisted by the emission of one LO phonon. (b) The simultaneous kinetics of the P line (λ ? 490.5 nm) and A-LO line (λ ? 492.5 nm) are conflicting with the interpretation of the P line as resulting of radiative exciton-exciton collisions. We interpret the P line as due to biexciton recombination.We have studied the luminescence in the (I2-I1) region (486nm < λ < 490nm) at low excitation. We observe clearly the following, (a) A broad band (488 nm < λ < 490.5 nm) which corresponds to the gain observed in previous experiments of pulse and probe spectroscopy and interpreted as direct recombination in an electron hole liquid (EHL). (b) After the disappearance of the EHL band, one single line (MD), which shifts continuously towards the I2 position during the time resolved kinetics. We suggest it to be connected with the high excitation effect on donor impurities (bound polyexcitons).  相似文献   

15.
16.
Graphitized structures are fabricated on the polycrystalline diamond surface using an excimer KrF (λ = 248 nm, τ = 20 ns) and a Ti:Al2O3 (λ = 400 nm, τ = 120 fs) lasers. It is shown that the conductivity of formed structures is independent of the energy density and the number of pulses per surface point in the case of the excimer laser, whereas such a dependence was observed for femtosecond pulses. The causes of the dependence of the conductivity of surface structures on laser irradiation parameters are discussed.  相似文献   

17.
The nonlinear refraction in thin films of fullerene C60 (100 nm) is studied by the Z-and RZ-scan methods using the second harmonic of a picosecond Nd:YAG laser (λ = 532 nm, τ = 55 ps). The combined effect of n2 (self-focusing of laser radiation) and n4 (self-defocusing) is analyzed. Mechanisms responsible for the nonlinear refraction in films are discussed.  相似文献   

18.
The optical parameters of homogeneous, isotropic, and fluorescent thin films are determined by comparing measured with calculated angular intensity distributions of the s- and p-polarized light emitted into the substrate. The method also yields information about the multipole nature of the emitted radiation. The theory is presented for electric and magnetic dipole transitions. For extremely thin layers of optical thickness n0d0 ? λ/8 (where λ is the emission wavelength) analytic expressions for the angular intensity distributions are given. For between 25–30 nm thick evaporated layers of an europium-benzoyltrifluoro-acetone- chelate the refractive index was determined to be n0 = 1.57 at λ = 612 nm. The fluorescent light emitted by these layers in an about 6 nm wide band centered at λ = 612 nm is emitted by randomly oriented electric dipoles.  相似文献   

19.
Magnetic-field induced changes revealed in reflectance spectra R(λ) of nonmagnetic dielectrics Al2O3, LiF, and MgO in the IR range (λ = 2.5–25 μm) are reported. The reflectance spectra are shown to have specific features in the vicinity of the wavelengths corresponding to optical phonon mode excitation in these crystals, with the magnetic field giving rise to a noticeable change of reflectance ΔR/R(λ) at these wavelengths. The value of ΔR/R(λ) for p-(s-) polarized IR radiation in a magnetic field of ~13 kOe is ~0.6% (~0.4%) for Al2O3 at λ ≈ 9.6 μm, ~1.63% (~1.15) for LiF at λ ≈ 11.1 μm, and ~ 0.07 (~0.2%) for MgO at λ ≈ 11.7 μm, respectively. These changes can be increased substantially by irradiating the dielectric crystals by x-ray radiation. It is shown that the optical and magnetooptical properties of the above dielectrics in the IR spectral region can be described in terms of the polaron excitation theory.  相似文献   

20.
In research on the production of beams of coherent γ rays (γ-ray lasers), conditions under which a substantial change Δλ/λ=?(0.114 ±0.027) in the radioactive decay constant λ (the isomeric level 89.53 keV 119m Sn, T 1/2=293 days) can occur have been found experimentally for the first time. This is made possible by coherent Mo ssbauer (23.87 keV) backscattering from a resonant screen located nearby. An interpretation of the effect observed is proposed on the basis of the idea of dynamic synchronization of oscillations between a nuclear level and a standing wave of Mössbauer radiation. Possibilities for further increasing Δλ/λ up to 0.5 are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号