首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient photocatalytic hydrogen evolution system without an electron mediator such as methyl viologen (MV(2+)) has been constructed using 9-mesityl-10-methylacridinium ion (Acr(+)-Mes), poly(N-vinyl-2-pyrrolidone)-protected platinum nanoclusters (Pt-PVP) and NADH (beta-nicotinamide adenine dinucleotide, reduced form) as the photocatalyst, hydrogen evolution catalyst and electron donor, respectively. The photocatalyst (Acr(+)-Mes) undergoes photoinduced electron transfer (ET) from the Mes moiety to the singlet excited state of the Acr(+) moiety to produce an extremely long-lived ET state, which is capable of oxidizing NADH and reducing Pt-PVP, leading to efficient hydrogen evolution. The hydrogen evolution efficiency is 300 times higher than that in the presence of MV(2+) because of the much faster reduction rate of Pt-PVP by Acr(*)-Mes compared with that by MV(*+). When the electron donor (NADH) is replaced by ethanol in the presence of an alcohol dehydrogenase (ADH), NADH is regenerated during the photocatalytic hydrogen evolution.  相似文献   

2.
A highly efficient photocatalytic system for hydrogen evolution with dihydronicotinamide coenzyme (NADH) as a sacrificial agent in an aqueous solution has been constructed by using water-soluble platinum clusters functionalized with methyl viologen-alkanethiol (MVA2+) and a simple electron-donor dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes), which is capable of fast photoinduced electron transfer but extremely slow back electron transfer. The mean diameter of the platinum core was determined as R(CORE) = 1.9 nm with a standard deviation sigma = 0.5 nm by transmission electron microscopy (TEM). As a result, the hydrogen-evolution rate of the photocatalytic system with MVA2+-modified platinum clusters (MVA2+-PtC) is 10 times faster than the photocatalytic system with the mixture of the same amount of MVA2+ and platinum clusters as that of MVA2+-PtC under otherwise the same experimental conditions. The radical cation of NADH has been successfully detected by laser flash photolysis experiments. The decay of the absorbance due to NAD*, produced by the deprotonation from NADH*+, coincides with the appearance of the absorption band due to Acr*-Mes. This indicates electron transfer from NAD* to Acr+-Mes to give Acr*-Mes, which undergoes the electron-transfer reduction of MVA2+-PtC, leading to the efficient hydrogen evolution.  相似文献   

3.
We have prepared a variety of porphyrin-fullerene linked systems to mimic photoinduced energy and electron transfer (ET) processes in photosynthesis. Photodynamical studies on porphyrin and analogs-fullerene linked systems have revealed the acceleration of photoinduced electron transfer and charge-shift and the deceleration of charge recombination, which is reasonably explained by the small reorganization energies of electron transfer in fullerenes. In this context, we have proposed two strategies, photoinduced single-step and multi-step electron transfers, for prolonging the lifetime of a charge-separated state in donor-acceptor linked systems. The single-step ET strategy allowed a zinc chlorin-fullerene linked dyad to extend the lifetime up to 120 seconds in frozen PhCN at 123 K, which is the longest value of charge separation ever reported for donor-acceptor linked systems. Unfortunately, however, the quantum yield of formation of the charge-separated state was as low as 12%, probably due to the decay of the precursor exciplex state to the ground state rather than to the favorable complete charge-separated state. In contrast, the multi-step ET strategy has been successfully applied to porphyrin-fullerene linked triads, tetrads, and a pentad. In particular, a ferrocene-porphyrin trimer-fullerene pentad revealed formation of a long-lived charge-separated state (0.53 s in frozen DMF at 163 K) with an extremely high quantum yield (83%), which is comparable to natural bacterial reaction centers. These results not only provide valuable information for a better understanding of photoinduced energy and electron transfer processes in photosynthesis, but also open the door for the development of photoinitiated molecular devices and machines.  相似文献   

4.
芳基二氢萘类衍生物是许多生物活性的天然产物以及药物的常见结构单元,其合成一直都受到化学家们的关注.传统的1,2-二氢-1-芳基萘骨架化合物的构筑大都需要进行底物的预官能团化,在高温条件下进行,且产物的选择性较差,因此发展一种简单温和的制备方法很有必要.最近兴起的可见光催化因具有条件温和、环境友好等特点而成为了合成化学家的研究热点.近期研究发现,在可见光作用下利用吖啶光敏剂的强氧化能力,可以实现苯乙烯的加成.但此类反应需要当量的氧化剂或氢原子转移试剂,容易导致苯乙烯的二聚环合产物的进一步氧化或还原.我们在前期发展的"放氢交叉偶联"反应的基础上,利用吖啶光催化和钴肟催化的协同作用,实现了苯乙烯的放氢二聚反应,在室温下高效构筑了1,2-二氢-1-芳基萘骨架,反应条件温和,底物脱除的电子和质子在钴肟催化剂作用下以氢气的形式释放,反应具有中等及以上的收率.本文以苯乙烯为模型底物,吖啶为光敏剂,钴肟配合物为质子还原催化剂,在乙腈溶剂中,蓝色LED灯下光照24 h可以获得56%的产率,对于其它的光敏剂如fac-Ⅰr(ppy)3等则不能催化该反应.通过催化剂种类及用量筛选表明,7 mol%的Co(dmgH_2)pyCl配合物具有最好的反应效果,可以获得72%的收率.控制实验表明,光敏剂、钴肟催化剂和光照都是必须的.通过底物拓展我们发现,烷基、卤素等不同取代基的苯乙烯类化合物均可以获得较好的收率,不同苯乙烯之间也可以发生交叉反应.随后,我们进一步通过光谱和中间体捕获实验对反应机理进行了研究.自由基捕获实验说明反应过程可能涉及自由基历程;光谱淬灭实验表明苯乙烯和Co(dmgH_2)pyCl均可淬灭吖啶的发光,但苯乙烯淬灭吖啶的程度远大于Co(dmgH_2)pyCl淬灭吖啶的程度.在反应时苯乙烯的浓度远大于催化剂的溶度,因此,我们认为激发态吖啶首先与苯乙烯发生反应;可见光照射反应体系1 min后在440–500和550–650 nm处观察到明显的Co~Ⅱ和Co~Ⅰ的吸收峰.基于以上实验结果,我们提出了可能的催化循环:吖啶受光激发到达激发态后,首先与底物苯乙烯发生单电子转移生成苯乙烯正离子自由基和吖啶阴离子自由基Acr~·-Mes,Acr~·-Mes还原Co(dmgH_2)pyCl生成Co ~Ⅱ中间体,从而回到基态完成光催化循环.苯乙烯正离子自由基与另一分子苯乙烯加成环合,进而通过芳构化生成自由基中间体,再与Co Ⅱ作用生成目标产物1,2-二氢-1-芳基萘和Co~Ⅰ,Co~Ⅰ通过结合体系中的质子进而释放出氢气回到Co~ Ⅲ从而完成钴肟催化循环.  相似文献   

5.
Photooxygenation of cyclohexane by O(2) occurs efficiently under visible-light irradiation of an O(2)-saturated acetonitrile solution containing 9-mesityl-10-methylacridinium ions (Acr(+)-Mes) and HCl to yield cyclohexanone, cyclohexanol and hydrogen peroxide. The photocatalytic reaction is initiated by electron transfer from Cl(-) to the mesitylene radical cation moiety.  相似文献   

6.
Visible light irradiation of the absorption band of 9-mesityl-10-methylacridinium ion (Acr+-Mes) in an O2-saturated acetonitrile (MeCN) solution containing 9,10-dimethylanthracene results in formation of oxygenation product, i.e., dimethylepidioxyanthracene (Me2An-O2). Anthracene and 9-methylanthracene also undergo photocatalytic oxygenation with Acr+-Mes to afford the corresponding epidioxyanthracenes under the photoirradiation. In the case of anthracene, the further photoirradiation results in formation of anthraquinone as the final six-electron oxidation product, via 10-hydroxyanthrone, accompanied by generation of H2O2. When anthracene is replaced by olefins (tetraphenylethylene and tetramethylethylene), the photocatalytic oxygenation of olefins affords the corresponding dioxetane, in which the O-O bond is cleaved to yield the corresponding ketones. The photocatalytic oxygenation of anthracenes and olefins is initiated by photoexcitation of Acr+-Mes, which results in formation of the electron-transfer state: Acr*-Mes*+, followed by electron transfer from anthracenes and olefins to the Mes*+ moiety together with electron transfer from the Acr* moiety to O2. The resulting anthracene and olefin radical cations undergo the radical coupling reactions with O2*- to produce the epidioxyanthracene (An-O2) and dioxetane, respectively.  相似文献   

7.
Anion binding has emerged as an attractive strategy to construct supramolecular electron donor-acceptor complexes. In recent years, the level of sophistication in the design of these systems has advanced to the point where it is possible to create ensembles that mimic key aspects of the photoinduced electron-transfer events operative in the photosynthetic reaction centre. Although anion binding is a reversible process, kinetic studies on anion binding and dissociation processes, as well as photoinduced electron-transfer and back electron-transfer reactions in supramolecular electron donor-acceptor complexes formed by anion binding, have revealed that photoinduced electron transfer and back electron transfer occur at time scales much faster than those associated with anion binding and dissociation. This difference in rates ensures that the linkage between electron donor and acceptor moieties is maintained over the course of most forward and back electron-transfer processes. A particular example of this principle is illustrated by electron-transfer ensembles based on tetrathiafulvalene calix[4]pyrroles (TTF-C4Ps). In these ensembles, the TTF-C4Ps act as donors, transferring electrons to various electron acceptors after anion binding. Competition with non-redox active substrates is also observed. Anion binding to the pyrrole amine groups of an oxoporphyrinogen unit within various supramolecular complexes formed with fullerenes also results in acceleration of the photoinduced electron-transfer process but deceleration of the back electron transfer; again, this is ascribed to favourable structural and electronic changes. Anion binding also plays a role in stabilizing supramolecular complexes between sulphonated tetraphenylporphyrin anions ([MTPPS](4-): M = H(2) and Zn) and a lithium ion encapsulated C(60) (Li(+)@C(60)); the resulting ensemble produces long-lived charge-separated states upon photoexcitation of the porphyrins.  相似文献   

8.
[Structure: see text] Photocatalytic carbon-carbon bond formation of 9,10-dimethylanthracene (DMA) in chloroform occurs efficiently via the electron-transfer oxidation of DMA with the photoinduced electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes), followed by deprotonation from the methyl group of DMA radical cation and the radical coupling reaction between anthracenylmethyl radicals to produce dimethyllepidopterene.  相似文献   

9.
10.
Intramolecular electron transfer (ET) processes within donor-acceptor linked compounds in solution and donor-acceptor ion-pairs in crystal have been investigated by means of laser photolysis kinetic spectroscopy. An excited Ru(II)-moiety of donor-acceptor compounds undergoes intramolecular electron-transfer to either ruthenium(III) ion, rhodium(III) ion or a cobalt(III) ion, followed by back ET to regenerate the original reactant. An Arrhenius plot of the ET rate gave a straight line with an intercept (frequency factor) and a slope (activation energy) for the photoinduced ET and the back ET. Mixed-valence isomer states produced via photoinitiated ET rapidly decayed via back ET. A common and large frequency factor observed for Ru(II)-Rh(III) compounds is accounted for in terms of solvent-relaxation dynamics. For the back ET in the Ru(II)-Co(III) compounds, the frequency factors are reduced because of negative entropy change. ET within donor-acceptor ion-pair of Ru(bpy)23 and Co(CN)36 in crystal took place very rapidly compared with in water.  相似文献   

11.
Binding of chloride anion to a tetrathiafulvalene calix[4]pyrrole (TTF-C4P) donor results in ET to Li(+)@C(60) to produce the radical pair (TTF-C4P(?+)/Li(+)@C(60)(?-)), the structure of which was characterized by X-ray crystallographic analysis. The addition of tetraethylammonium cation, which binds more effectively than Li(+)@C(60)(?-) as a guest within the TTF-C4P cavity, leads to electron back-transfer, restoring the initial oxidation states of the donor and acceptor pair.  相似文献   

12.
The photophysical behavior of acridine (Acr) shows facilitated water-assisted protonation equilibrium between its deprotonted (Acr* ~ 10 ns) and protonated forms (AcrH(+*) ~ 28 ns) within confined region of ordered water molecules inside AOT/H(2)O/n-heptane reverse micelles (RMs). The time-resolved-area-normalized-emission spectra confirm both Acr* and AcrH(+*), while time-resolved-emission spectra depict time evolution between them. Quenching of AcrH(+*) with N,N-dimethylaniline (DMA) is a purely diffusion-controlled bimolecular quenching with linear Stern-Volmer (S-V) plot, while nonlinearity arises with triethylamine (TEA) that forms ground state complex with AcrH(+) (AcrH(+)··H(2)O··TEA) indicating both static and dynamic quenching. Transient intermediates, DMA(?+) and AcrH(?) infer photoinduced electron transfer from DMA to Acr, while those from AcrH(+)··H(2)O··TEA complex suggest water mediated excited-state proton transfer (ESPT) between AcrH(+) and TEA. The ESPT becomes faster in larger RMs due to enhanced mobility of hydronium ions in AcrH(+)··H(2)O··TEA, which reduces in smaller RMs as water becomes much more constrained owing to stronger complexation by excess confinement.  相似文献   

13.
The catalytic durability of an organic photocatalyst, 9-mesityl-10-methyl acridinium ion (Acr(+)-Mes), has been dramatically improved by the addition of [{tris(2-pyridylmethyl)amine}Cu(II)](ClO(4))(2) ([(tmpa)Cu(II)](2+)) in the photocatalytic oxygenation of p-xylene by molecular oxygen in acetonitrile. Such an improvement is not observed by the addition of Cu(ClO(4))(2) in the absence of organic ligands. The addition of [(tmpa)Cu](2+) in the reaction solution resulted in more than an 11 times higher turnover number (TON) compared with the TON obtained without [(tmpa)Cu(II)](2+). In the photocatalytic oxygenation, a stoichiometric amount of H(2)O(2) formation was observed in the absence of [(tmpa)Cu(II)](2+), however, much less H(2)O(2) formation was observed in the presence of [(tmpa)Cu(II)](2+). The photocatalytic mechanism was investigated by laser flash photolysis measurements in order to detect intermediates. The reaction of O(2)˙(-) with [(tmpa)Cu(II)](2+) monitored by UV-vis spectroscopy in propionitrile at 203 K suggested formation of [{(tmpa)Cu(II)}(2)O(2)](2+), a transformation which is crucial for the overall 4-electron reduction of molecular O(2) to water, and a key in the observed improvement in the catalytic durability of Acr(+)-Mes.  相似文献   

14.
The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI (-*)-PMI (+*) charge transfer (CT) state. Our study focuses on the minimal Gibbs free energy (Delta G ET) required to achieve quantitative CT and on establishing the role of charge recombination to a triplet state. We used time-resolved photoluminescence and picosecond photoinduced absorption (PIA) to investigate excited singlet (S 1) and CT states and complemented these experiments with singlet oxygen ( (1)Delta g) luminescence and PIA measurements on longer timescales to study the population of triplet excited states (T 1). In an apolar solvent like cyclohexene (CHX), photoinduced electron transfer does not occur, but in more polar solvents such as toluene (TOL) and chlorobenzene (CB), photoexcitation is followed by a fast electron transfer, populating the PDI (-*)-PMI (+*) CT state. We extract rate constants for electron transfer (ET; S 1-->CT), back electron transfer (BET; S 1<--CT), and charge recombination (CR) to lower-energy states (CT-->S 0 and CT-->T 1). Temperature-dependent measurements yield the barriers for the transfer reactions. For ET and BET, these correspond to predictions from Marcus-Jortner theory and show that efficient, near quantitative electron transfer ( k ET/ k BET >or= 100) can be obtained when Delta G ET approximately -120 meV. With respect to triplet state formation, we find a relatively low triplet quantum yield (Phi T < 25%) in CHX but much higher values (Phi T = 30-98%) in TOL and CB. We identify the PDI (-*)-PMI (+*) state as a precursor to the T 1 state. Recombination to T 1, rather than to the ground-state S 0, is required to rationalize the experimental barrier for CR. Finally, we discuss the relevance of these results for electron donor-acceptor films in photovoltaic devices.  相似文献   

15.
Time-domain density functional theory simulations resolve the apparent conflict between the central role that thermal fluctuations play in the photoinduced chromophore-TiO 2 electron transfer (ET) in dye-sensitized semiconductor solar cells [J. Am. Chem. Soc. 2005, 127, 18234; Isr. J. Chem. 2003, 42, 213] and the temperature independence of the ET rate [e.g., Annu. Rev. Phys. Chem. 2005, 56, 119]. The study, performed on the alizarin-TiO 2 interface at a range of temperatures, demonstrates that the ET dynamics, both adiabatic and nonadiabatic (NA), are dependent on the temperature, but only slightly. The adiabatic rate increases with temperature because a fluctuation toward a transition state (TS) becomes more likely. A classical TS theory analysis of the adiabatic ET gives a Gibbs energy of activation that is equal to k B T at approximately 50 K, and a prefactor that corresponds to multiple ET pathways. The NA rate increases as a result of changes in the distribution of photoexcited-state energies and, hence, in the density of accessible TiO 2 levels, as expressed in the Fermi Golden Rule. In the system under investigation, the photoexcited state lies close to the bottom of the TiO 2 conduction band (CB), and the chromophore-semiconductor coupling is strong, resulting in primarily adiabatic ET. By extrapolating the simulation results to chromophores with excited states deeper inside the CB and weaker donor-acceptor coupling, we conclude that the interfacial ET is essentially independent of temperature, even though thermal ionic motions create a widespread of initial conditions, determine the distribution of injected electron energy, and drive both adiabatic and NA ET.  相似文献   

16.
Photoexcitation of spin crossover (SCO) complexes can trigger extensive electronic spin transitions and transformation of molecular structure. However, the precise nature of the associated ultrafast structural dynamics remains elusive, especially in the solid state. Here, we studied a single‐crystal SCO material with femtosecond electron diffraction (FED). The unique capability of FED allows us to directly probe atomic motions and to track ultrafast structural changes within a crystal lattice. By monitoring the time‐dependent changes of the Bragg reflections, we observed the formation of a photoinduced structure similar to the thermally induced high‐spin state. The data and refinement calculations indicate the global structural reorganization within 2.3 ps, as the metal–ligand bond distribution narrows during intramolecular vibrational energy redistribution (IVR) driving the intermolecular rearrangement. Three independent dynamical group are identified to model the structural dynamics upon photoinduced SCO.  相似文献   

17.
The synthesis and the photophysical properties of a series of noncovalently assembled donor-acceptor systems, dyads, is reported. The presented approach uses an "innocent" coordination compound, a scandium(III) acetyl acetonate derivative, as core and promotor of the dyad formation. Intercomponent photoinduced energy transfer or electron transfer within the dynamic assembly, which yields to a statistical library of donor-acceptor systems, is reported. The assemblies for energy-transfer processes are constituted by an energy donor, Ru(bpy)(3)(2+)-based component (bpy = 2,2'-bipyridine), and by an energy-acceptor moiety, anthracene-based unit, both substituted with a chelating ligand, acetyl acetone, that via coordination with a scandium ion will ensure the formation of the dyad. If N,N,N'N'-tetramethyl-2,5-diaminobenzyl-substituted acetyl acetonate ligands are used in the place of 9-acyl-anthracene, intramolecular photoinduced electron transfer from the amino derivative (electron donor) to the Ru(bpy)(3)(2+)-unit was detected upon self-assembly, mediated by the scandium complex. The photophysical processes can be studied on the lifetime of the kinetically labile complexes.  相似文献   

18.
Control over generation and dynamics of excited electronic states is fundamental to their utilization in all areas of technology. We present the first example of multichromophoric systems in which emissive triplet states are generated via a pathway involving photoinduced electron transfer (ET), as opposed to local intrachromophoric processes. In model dyads, PtP-Ph(n)-pRhB(+) (1-3, n = 1-3), comprising platinum(II) meso-tetraarylporphyrin (PtP) and Rhodamine B piperazine derivative (pRhB(+)), linked by oligo-p-phenylene bridges (Ph(n)), upon selective excitation of pRhB(+) at a frequency below that of the lowest allowed transition of PtP, room-temperature T(1)→S(0) phosphorescence of PtP was observed. The pathway leading to the emissive PtP triplet state includes excitation of pRhB(+), ET with formation of the singlet radical pair, intersystem crossing within that pair, and subsequent radical recombination. Because of the close proximity of the triplet energy levels of PtP and pRhB(+), reversible triplet-triplet (TT) energy transfer between these states was observed in dyads 1 and 2. As a result, the phosphorescence of PtP was extended in time by the long decay of the pRhB(+) triplet. Observation of ET and TT in the same series of molecules enabled direct comparison of the distance attenuation factors β between these two closely related processes.  相似文献   

19.
对一类以9,10-二甲氧基蒽为给体,双酚A为连接链连接不同受体的电子给体-受体体系,通过单光子计数法测定荧光寿命,计算了体系的光致电子转移反应速率常数;通过测定氧化还原电位,计算出各电子给体-受体体系电子转移反应的自由能变化。并根据电子转移反应理论对光致电子转移速率常数与自由能变化关系进行了理论计算分析,发现本文各体系的光致电子转移速率常数的实验值与电子转移反应理论曲线吻合得比较好,同时也揭示在该  相似文献   

20.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号