首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Two reaction schemes were developed to covalently graft poly(ethylene glycol) (PEG) chains on poly(ethylene-co-acrylic acid) (EAA) surfaces. The schemes involved surface grafting of linker molecules L-lysine or polypropyleneamine dendrimer (AM64), with subsequent covalent bonding of PEG chains to the linker molecules. NHS and EDC were used to activate the carboxylic acid groups of the EAA in the outermost region of the film, estimated to be 20 nm by ATR-FTIR spectroscopy. XPS demonstrated that the conversion of this activation step was almost 100% in the detected region. After activation, L-lysine or dendrimer was grafted onto the EAA surface, followed by PEG grafting. Combining the data from ATR-FTIR, XPS, and contact angle goniometry, it was found that the PEG chains were grafted on the surface of the EAA film and larger surface coverage was achieved when the dendrimer was used as the intermediate layer. This surface also had the lowest water contact angle.  相似文献   

2.
The surfaces of ozone-pretreated polycarbonate films were subjected to further modification by thermally induced graft copolymerization with acrylic acid (AAc), sodium salt of styrene sulfonic acid (NaSS), N,N-dimethylacrylamide (DMAA), N,N-(dimethylamino)ethyl methacrylate (DMAEMA) and 3-dimethyl(methacryloyl ethyl)-ammonium propanesulfonate (DMAPS) monomers. The structure and composition at the copolymer interface were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). For polycarbonate films with a substantial amount of grafted polymer, the hydrophilic graft penetrates or becomes partially submerged beneath a thin surface layer of dense substrate chains. This microstructure was further supported by the water contact angle measurements. Adhesive-free adhesion studies revealed that the AAc, DMAA or DMAPS graft copolymerized polycarbonate film surface adhered strongly to another similarly modified surface (homo-interface) when brought into direct contact in the presence of water and subsequently dried. The development of the lap shear strength is dependent on the concentration of the surface graft, the microstructure of the grafted surface, the adhesion (drying) time, and the nature of the interfacial interaction. The simultaneous presence of chain entanglement and electrostatic interaction readily results in substantially enhanced adhesion strengths between two DMAPS graft copolymerized surfaces or between an AAc and a DMAA graft copolymerized surface (hetero-interface). XPS analyses of the delaminated surfaces suggest that failure occurred cohesively below the graft-substrate interface. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 357–366, 1998  相似文献   

3.
A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating was investigated by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was employed to evaluate the effect of annealing treatment on the morphology of the coatings in terms of their uniformity and porosity. Inductively coupled plasma mass spectrometry was used to measure ion concentrations in ion release tests performed on Ti-6Al-4V sheets modified with PAA coatings (annealed and unannealed). Results indicate that the annealing process produces coatings that possess considerable anti-corrosion performance. Moreover, the availability and the reactivity of the surface carboxylic groups were exploited in order to graft biological molecules onto the PAA-modified titanium implants. The feasibility of the grafting reaction was tested using a single aminoacid residue. A fluorinated aminoacid was selected, and the grafting reaction was monitored both by XPS, using fluorine as a marker element, and via quartz crystal microbalance (QCM) measurements. The success of the grafting reaction opens the door to the synthesis of a wide variety of PAA-based coatings that are functionalized with selected bioactive molecules and promote positive reactions with the biological system interfacing the implant while considerably reducing ion release into surrounding tissues. Figure Vanadium release from bare Ti-6Al-4V sheets compared with the release from sheets coated with annealed and unannealed electrosynthesised PAA Dedicated to Professor P.G. Zambonin on the occasion of his 72nd birthday.  相似文献   

4.
Compared witli the traditional dental implant, TixOs■ manufactured by direct laser metal forming(DLMF) technology exhibits improved capability for bone osteointegration due to its porous surface structure, and has achieved remarkable clinical effect. However, like the traditional titanium and other alloyed implants, the porous titanium implant TixOsR also has relatively weak bioactivity. To address this issue, a proper surface modification method may be needed. Hydroxyapatite(HA) has been widely used in implant surface coating for its similar chemical composition to bone tissue and its osteoconductive properties. Thus, combining TixOs■ implants with hydroxyapatite can be an efficient way to enhance their bioactivity. We herewith reported a competent pulsed laser deposition(PLD) method of coating nano-sized HA thin film onto the porous TixOs■ implant. The HA coatings were characterized by means of scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS) and focused ion beam(FIB) method, and nanocrystal sized thin HA films were identified on the surface of TixOs■ implants. The low cytotoxicity and improved cell proliferation ability of HA coated implants were further tested and verified using MC 3T3 E1 cells with the consideration of the controlling group. Our results show that a stable and bioactive HA tliin film is able to form on the surtace of the porous titanium implant by PLD method.This may benefit the fiirther clinical application of TixOs■ implants.  相似文献   

5.
PTFE超细颗粒的表面活化与化学接枝   总被引:2,自引:0,他引:2  
采用钠萘络合物化学腐蚀液对聚四氟乙烯(PTFE)超细颗粒表面进行活化, 对活化后的表面用氨基十一酸碳链进行化学接枝, 并用IR和XPS技术对活化及接枝前后颗粒的表面结构和价键状态进行了表征. 结果表明:活化后的PTFE超细颗粒表面上存在羟基、羰基、羧基等活性官能团, 并出现炭化现象;氨基十一酸的氨基能与表面羟基发生缩合反应, 并接枝于PTFE超细颗粒表面.  相似文献   

6.
Recently synthesized (Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. J. Fluorine Chem. 2001, 107, 23-30) SF5-terminated perfluoroalkyl thiols (SF5(CF2)nCH2CH2SH, where n = 2, 4, and 6) and a symmetric SF5-terminated dialkyl disulfide ([SF5-CH=CH-(CH2)8-S-]2) were assembled as thin films chemisorbed onto gold surfaces. The adsorbed monolayer films of these SF5-containing molecules on polycrystalline gold were compared using ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and infrared spectroscopy (FTIR) surface analytical methods. The resulting SF5-dialkyl disulfide monolayer film shows moderate angle dependence in depth-dependent XPS analysis, suggesting a preferentially oriented film. The SF5-terminated perfluoroalkyl thiols exhibit angular-dependent XPS compositional variance depending on perfluoroalkyl chain length, consistent with improved film assembly (increasingly hydrophobic, fewer defects, and more vertical chain orientation increasing film thickness) with increasing chain length. Tof-SIMS measurements indicate that both full parent ions for these film-forming molecules and the unique SF5 terminal group are readily detectable from the thin films without substantial contamination from other adsorbates.  相似文献   

7.
Pristine and argon plasma pretreated polytetrafluoroethylene (PTFE), polystyrene (PS), high-density polyethylene (HDPE) and poly(ethylene terrephthalate) (PET) films have been subjected to near-UV light-induced graft polymerization with water-soluble acrylamide (AAm), the sodium salt of styrene sulfonic acid (NaSS), acrylic acid (AAc) and N,N-dimethylaminoethylmethylacrylate (DMAEMA) monomers. The structure and composition at the substrate surface with grafted polymer were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). In most cases, the density of surface grafting is enhanced by plasma pretreatment. For each polymer substrate with a substantial amount of grafting, the hydrophilic graft penetrates or becomes partially submerged beneath a thin surface layer of dense substrate chains. This stratified microstructure is consistent with the static secondary ion mass spectroscopy (SIMS) and Ar+ beam depth profiling results. The two latter techniques also suggest that when the grafted polymer has a bulky substituent, there is less efficient penetration of the grafted polymer below the surface.  相似文献   

8.
Silica–polystyrene core‐shell particles were successfully prepared by surface‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization of styrene monomer from the surfaces of the silica‐supported RAFT agents. Initially, macro‐RAFT agents were synthesized by RAFT polymerization of γ‐methacryloxypropyltrimethoxysilane (MPS) in the presence of chain transfer agents (CTAs). Immobilization of CTAs onto the silica surfaces was then performed by reacting silica with macro‐RAFT agents via a silane coupling. Grafting of polymer onto silica forms core‐shell nanostructures and shows a sharp contrast between silica core and polymer shell in the phase composition. The thickness of grafted‐polymer shell and the diameter of core‐shell particles increase with the increasing ratio of monomer to silica. A control experiment was carried out by conventional free radical emulsion copolymerization of MPS‐grafted silica and styrene under comparable conditions. The resulting data provide further insight into the chemical composition of grafted‐polymers that are grown from the silica surface through RAFT process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 467–484, 2009  相似文献   

9.
Covalent attachment of adhesive peptides to biomaterials surfaces can result in the formation of a bioactive and biomimetic surface. We have demonstrated that titanium surfaces grafted with adhesion peptides, reproducing sequences of fibronectin and vitronectin, can increase osteoblast adhesion compared to non-treated surfaces.We now extend our investigation to peptide immobilization on glass for studying human osteoblast adhesion and spreading. Silanization was used to anchor adhesion peptides to the glass surface through a selective or a non-selective immobilization. Investigated samples were analysed by XPS spectroscopy. Comparison between the results obtained using two different peptides and applying selective and non-selective immobilization will be discussed.  相似文献   

10.
《Electroanalysis》2005,17(24):2231-2238
Square‐wave voltammetric detection of dopamine was studied at a copper (Cu)‐(3‐mercaptopropyl) trimethoxy silane (MPS)‐complex modified electrode (Cu‐MPS). The modification of the electrode was based on the attachment of MPS onto an electrochemically activated glassy carbon electrode (GCE) by the interaction between methoxy silane groups of MPS and surface hydroxyl groups and followed by the complexation of copper with the thiol groups of MPS. The surface of the modified electrode was further coated by a thin layer of Nafion film. The surface of the Nafion coated MPS‐Cu complex modified electrode (Nafion/Cu‐MPS) was characterized using cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT‐IR) spectrometry. The modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of dopamine, which was oxidized at a reduced potential of +0.35 V (vs. Ag/AgCl) at a wider pH range. Various experimental parameters, such as the amount of copper, the pH, and the temperature were optimized. A linear calibration plot was obtained in the concentration range between 8.0×10?8 M and 5.0×10?6 M and the detection limit was determined to be 5.0×10?8 M. The other common biological compounds including ascorbic acid did not interfere and the modified electrode showed an excellent specificity to the detection of dopamine. The Nafion/Cu‐MPS modified electrode can be used for about 2 months without any significant loss in sensitivity.  相似文献   

11.
To improve the thromboresistance of a titanium alloy (TiAl6V4) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl6V4 surface by a plasma induced technique. Cleaned TiAl6V4 surfaces were pretreated with H2O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl6V4 surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl6V4 and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a 1-month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.  相似文献   

12.
Fully bleached kraft pulp (BKP) and thermomechanical pulp (TMP) fibers were grafted with acrylamide via dielectric-barrier discharge treatment at various treatment dosages. The results indicate that increased dielectric-barrier discharge treatment leads to the increased polymerization and incorporation of acrylamide onto fiber surfaces. Greater incorporation of poly(acrylamide) occurs on the BKP fibers than the TMP at the same treatment conditions. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and scanning electron microscopy (SEM) indicate that dielectric-barrier discharge initiated modifications to fiber surface topo-chemistry occur across the fiber such that the sheet is randomly peppered with modified areas; however, it occurs in patches on individual fibers as opposed to occurring as an evenly distributed thin film. SEM and elemental analysis also showed that the incorporation of acrylamide onto the fiber surface increases with increased treatment dosages.  相似文献   

13.
The adsorption of cationic starch (CS) from aqueous electrolyte solutions onto model cellulose film has been investigated by the quartz crystal microbalance with dissipation monitoring (QCM-D) and X-ray photoelectron spectroscopy (XPS). The influence of the electrolyte composition and charge density of CS was examined. The adsorption of CS onto cellulose followed the general trends expected for polyelectrolyte adsorption on oppositely charged surfaces, with some exceptions. Thus, as result of the very low surface charge density of the cellulose surface, highly charged CS did not adsorb in a flat conformation even at low ionic strength. The porosity of the film, however, enabled the penetration of coiled CS molecules into the film at high electrolyte concentrations. Differences between the adsorption behavior of CS on cellulose and earlier observations of the adsorption of the same starches on silica could be explained by the different morphologies and acidities of the hydroxyl groups on the two surfaces.  相似文献   

14.
聚四氟乙烯微粉辐照接枝苯乙烯的XPS研究   总被引:2,自引:0,他引:2  
聚四氟乙烯微粉辐照接枝苯乙烯的XPS研究许观藩,罗云霞,杨弘(中国科学院长春应用化学研究所,长春,130022)关键词聚四氟乙烯,苯乙烯,表面接枝,XPS用辐照方法在疏水性高聚物材料表面接枝聚合亲水性单体,可以达到改性的目的.文献中所用的高聚物材料包...  相似文献   

15.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.  相似文献   

17.
Azobenzene-containing compounds were covalently attached onto Si(111) surfaces via Si-O linkages using a two-step procedure. The modified Si(111) surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy measurements. The monolayer surface showed preferably chemical stability. Switchable photoisomerizability of azobenzene molecules on these modified surfaces was observed in response to alternating UV and visible light exposure. The measured conductivity showed distinct difference with trans and cis forms of azobenzene compounds on as-modified Si(111) surfaces.  相似文献   

18.
Surface-initiated atom-transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA) was carried out on the hydrogen-terminated Si(100) substrates with surface-tethered alpha-bromoester initiator. Kinetic studies confirmed an approximately linear increase in polymer film thickness with reaction time, indicating that chain growth from the surface was a controlled "living" process. The "living" character of the surface-grafted PEGMA chains was further ascertained by the subsequent extension of these graft chains, and thus the graft layer. Well-defined polymer brushes of near 100 nm in thickness were grafted on the Si(100) surface in 8 h under ambient temperature in an aqueous medium. The hydroxyl end groups of the poly(ethylene glycol) (PEG) side chains of the grafted PEGMA polymer were derivatized into various functional groups, including chloride, amine, aldehyde, and carboxylic acid groups. The surface-functionalized silicon substrates were characterized by reflectance FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). Covalent attachment and derivatization of the well-defined PEGMA polymer brushes can broaden considerably the functionality of single-crystal silicon surfaces.  相似文献   

19.
利用表面引发原子转移自由基聚合(SI-ATRP)在聚对苯二甲酸乙二醇酯(PET)薄膜表面接枝苯乙烯和4-氟苯乙烯的共聚物.研究不同反应时间和不同配比下接枝共聚物对聚酯薄膜表面组成、结构和性能的影响.通过傅利叶变换红外光谱仪(ATR/FTIR),X-射线光电子能谱仪(XPS),凝胶渗透色谱(GPC)和扫描电子显微镜(SEM)对接枝改性前后PET薄膜的表面组成,结构和形貌进行分析;利用接触角测试和表面能计算对比研究接枝改性前后PET薄膜的表面性能.结果表明反应时间和单体百分含量对接枝百分率及接触角有一定的影响,随着反应时间的增长,聚酯薄膜表面接枝百分率增大,接触角增加,表面自由能下降.  相似文献   

20.
Carbon black (CB) particles were firstly encapsulated by γ-Methacryloxypropyltrimethoxysilane (MEMO) using a sol-gel method and then grafted with sodium 3-Mercapto-1-propanesulfonate (MPS) via thiol-ene click reaction. Morphology characterization reveals that modified CB particles have a core-shell structure. Element composition and chemical status derived from X-ray photoelectron spectroscopy (XPS) results prove the grafting of MPS molecules. Moreover, the crystal structure and thermal behavior of modified CB particles were characterized by Raman spectra and Thermogravimetric analysis (TGA) curves, respectively. The modified CB particles exhibit excellent self-dispersing ability in aqueous media and the dispersion has high thermal and centrifugal stability. This research provides a new insight into the preparation of inkjet printing ink with excellent stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号