首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adsorption of citric acid onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. The greatest adsorption was onto goethite and the least onto illite. Adsorption onto goethite was at a maximum below pH 5 and decreased as the pH was increased to pH 9. For kaolinite, maximum adsorption occurred between pH 4.5 and pH 7, decreasing below and above this pH region, while for illite maximum adsorption occurred between about pH 5 and pH 7, decreasing at both lower and higher pH. ATR-FTIR spectra of citrate adsorbed to goethite at pH 4.6, pH 7.0, and pH 8.8 were compared with those of citrate solutions between pH 3.5 and pH 9.1. While the spectra of adsorbed citrate resembled those of the fully deprotonated solution species, there were significant differences. In particular the C[bond]O symmetric stretching band of the adsorbed species at pH 4.6 and 7.0 changed shape and was shifted to higher wave number. Further spectral analysis suggested that citrate adsorbed as an inner-sphere complex at pH 4.6 and pH 7.0 with coordination to the surface most probably via one or more carboxyl groups. At pH 8.8 the intensity of the adsorbed bands was much smaller but their shape was similar to those from the deprotonated citrate solution species, suggesting outer-sphere adsorption. Insufficient citric acid adsorbed onto illite or kaolinite to provide spectroscopic information about the mode of adsorption onto these minerals. Data from adsorption experiments, and from potentiometric titrations of suspensions of the minerals in the presence of citric acid, were fitted by extended constant-capacitance surface complexation models. On the goethite surface a monodentate inner-sphere complex dominated adsorption below pH 7.9, with a bidentate outer-sphere complex required at higher pH values. On kaolinite, citric acid adsorption was modeled with a bidentate outer-sphere complex at low pH and a monodentate outer-sphere complex at higher pH. There is evidence of dissolution of kaolinite in the presence of citric acid. For illite two bidentate outer-sphere complexes provided a good fit to all data.  相似文献   

3.
The adsorption of o-phthalic acid at the hematite/water interface was investigated experimentally using batch adsorption experiments and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy over a wide range of solution pH, surface loading, and ionic strength conditions. Molecular orbital calculations for several possible surface complexes were also performed to assign atomistic structures to the features observed in the ATR-FTIR spectra. The results of the batch adsorption experiments exhibit typical anionic characteristics with high adsorption at low pH and low adsorption at high pH. The adsorption of phthalic acid also exhibits a strong dependence on ionic strength, which suggests the presence of outer-sphere complexes. ATR-FTIR spectra provide evidence of three fully deprotonated phthalate surface complexes (an outer-sphere complex and two inner-sphere complexes) under variable chemical conditions. A fully deprotonated outer-sphere complex appears to dominate adsorption in the circumneutral pH region, while two fully deprotonated inner-sphere complexes that shift in relative importance with surface coverage increase in importance at low pH. Comparison of experimental and theoretical calculations suggests the two inner-sphere complexes are best described as a mononuclear bidentate (chelating) complex and a binuclear bidentate (bridging) complex. The mononuclear bidentate inner-sphere complex was favored at relatively low surface coverage. With increasing surface coverage, the relative contribution of the binuclear bidentate inner-sphere complex increased in importance.  相似文献   

4.
Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was combined with batch experiments to study the sorption of uranium(VI) onto gibbsite (gamma-Al(OH)3). The experiments were performed under ambient conditions in 0.1 M NaClO4 solution in the pH range from 5.0 to 8.5 using a total uranium concentration of 1x10(-5) M, and a solid concentration of 0.5 g/40 ml. Two uranyl surface species with fluorescence lifetimes of 330+/-115 and 5600+/-1640 ns, respectively, were identified. The first species was dominating the more acid pH region whereas the second one became gradually more prominent towards higher pH values. The fluorescence spectra of both adsorbed uranyl(VI) surface species were described with six characteristic fluorescence emission bands situated at 479.5+/-1.1, 497.4+/-0.8, 518.7+/-1.0, 541.6+/-0.7, 563.9+/-1.2, and 585.8+/-2.1 nm. The surface species with the short-lived fluorescence lifetime of 330 ns is attributed to a bidentate mononuclear inner-sphere surface complex in which the uranyl(VI) is bound to two reactive OH- groups at the broken edge linked to one Al. The second surface species with the significant longer fluorescence lifetime of 5600 ns was attributed to small sorbed clusters of polynuclear uranyl(VI) surface species. The longer fluorescence lifetime of the long-lived uranyl surface species at pH 8.5 is explained with the growing average size of the adsorbed polynuclear uranyl surface species.  相似文献   

5.
Uranium(VI) was sorbed to freshly ground and leached albite in batch and flow-through systems in the pH range 5.0-6.4. The uranium(VI) surface complexes were studied by extended X-ray absorption fine structure (EXAFS) spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The EXAFS analysis of uranium(VI) sorbed on albite at pH 5.8 and 5 x 10(-6) M U(VI) showed one silicon atom at a USi distance of 3.09 A, which is indicative of the formation of an inner-sphere, mononuclear, bidentate uranium(VI) surface complex, Si(O)2UO2, on the silicate tetrahedra of albite. Two additional uranium(VI) sorption complexes were detected by TRLFS at higher initial aqueous U(VI) concentrations. However, the structure of these surface complexes could not be derived from EXAFS, since the measured EXAFS spectra represent the average of two surface complex structures. In order to simulate U(VI) sorption onto weathered feldspar surfaces, albite was leached with 0.01 M HClO4, resulting in surface material similar to amorphous silica gel. EXAFS showed that the equatorial oxygen shell of uranium(VI) sorbed on this material at pH 5.0 and 5.8 was split in two distances of 2.23 and 2.44 A. This indicates the formation of an inner-sphere surface complex.  相似文献   

6.
Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO4(2-) and selenite (SeO3(2-) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum (alpha-Al2O3) was studied to determine if adsorption mechanisms change as the aluminum oxide surface structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and alpha-Me2O3.  相似文献   

7.
Rare earth binary complex Eu(NNA)3 (NNA, alpha-naphthylacetic acid), ternary complex Eu(NNA)3.phen (phen, 1,10-phenanthroline) and a series of dinuclear complexes with different mole ratios of Eu3+ to Gd3+ were synthesized. Many advanced approaches, such as element analysis, FTIR spectra, TG and DTA analysis, were used to determine the composition and structure of binary and ternary complex. Moreover, their fluorescence properties were studied by fluorescent spectra and lifetimes. The fluorescence spectra and decay curves of dinuclear complexes indicated that the fluorescence emission intensity was enhanced and the fluorescence lifetime was prolonged by Gd3+. The dinuclear complexes show the best properties when the mole ratio of Eu3+ to Gd3+ is 6:4. A new parameter Y, which was used to evaluate the effect of Gd3+, was introduced. In addition, the relationship of Y value and mole fraction of Gd3+ was analyzed by mathematical software. The results showed that Y value decreased by single exponential mode when the content of Gd3+ decreased.  相似文献   

8.
Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.  相似文献   

9.
蒙脱土和高岭土对Pb2+的吸附   总被引:2,自引:0,他引:2  
张树芹  路福绥  李丽芳  孙停停 《应用化学》2011,28(12):1441-1447
选择带结构负电荷的蒙脱土和带微量结构负电荷的高岭土,研究了其对Pb2+的吸附性能,并探讨了吸附机理。 研究表明,蒙脱土和高岭土吸附Pb2+的动力学曲线符合准二级动力学方程,吸附等温线符合Langmuir方程。 Pb2+同时以内层络合和外层配合形式吸附,其相对量与pH值有关。 在pH值小于4和大于8的范围内,以内层配合物为主;而pH值在4~8范围内外层配合物比例增大。 Pb2+能进入蒙脱土的层间,而不能进入高岭土的层间;部分Pb2+可进入黏土颗粒的微孔中被固定。 蒙脱土对Pb2+的吸附能力和饱和吸附量明显高于高岭土。  相似文献   

10.
To contribute to the understanding of Eu(III) interaction preperties on hydrous alumina particles in the absence and presence of fulvic acid (FA), the complexation properties of Eu(III) with hydrous alumina, FA and FA-alumina hybrids are studied by batch and time-resolved laser fluorescence spectroscopy (TRLFS) techniques. The continuous increase in the fluorescence lifetime of Eu-alumina and Eu-FA with increasing pH indicates that the complexation is accompanied by decreasing number of hydration water in the first coordination sphere of Eu(III). Eu(III) is adsorbed onto alumina particles as outer-sphere surface complexes of ≡(Al?O)?Eu· (OH)· 7H2O and ≡(Al?O)?Eu· 6H2O at low pH values, and as inner-sphere surface complexes as ≡(Al?O)2?Eu+· 4H2O at high pH. In FA solution, Eu(III) forms complexes with FA as (COO)2Eu+(H2O) x and the hydration water number in the first coordination sphere decreases with pH increasing. The formation of ≡COO?Eu?(O?Al≡)· 4H2O is observed on FA-alumina hybrids, suggesting the formation of strong inner-sphere surface complexes in the presence of FA. The surface complexes are also characterized by their emission spectra [the ratio of emission intensities of 5 D 07 F 1 (λ=594 nm) and 5 D 07 F 2 (λ=619 nm) transitions] and their fluorescence lifetime. The findings is important to understand the contribution of FA in the complexation properties of Eu(III) on FA-alumina hybrids that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Eu(III), or its analogue trivalent lanthanide and actinide ions in natural environment.  相似文献   

11.
Thermodynamic parameters for the complexation of Eu(3+) with pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid, BTC) as a model system for polymerizable metal-complexing humic acids were determined using temperature-dependent time-resolved laser-induced fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC). At low metal and ligand concentrations (<50 μM Eu(3+), <1 mM BTC), a 1:1 monomeric Eu-BTC complex was identified in the range of 25-60 °C. At elevated concentrations (>500 μM Eu(3+) and BTC) a temperature-dependent polymerization was observed, where BTC monomers are linked via coordinating shared Eu(3+) ions. The two methods lead to comparable thermodynamic data (ΔH = 18.5 ± 1.5/16.5 ± 0.1 kJ mol(-1); ΔS = 152 ± 5/130 ± 5 J mol(-1) K(-1); TRLFS/ITC) in the absence of polymerization. With the onset of polymerization, TRLFS reveals the water coordination number of the lanthanide, whereas calorimetry is superior in determining the thermodynamic data in this regime. Evaluating the heat uptake kinetics, the monomer and polymer formation steps could be separated by "time-resolved" ITC, revealing almost identical binding enthalpies for the sequential reactions. Structural features of the complexes were studied by Fourier-transform infrared (FTIR) spectroscopy in combination with density functional theory (DFT) calculations showing predominantly chelating coordination with two carboxylate groups in the monomeric complex and monodentate binding of a single carboxylate group in the polymeric complex of the polycarboxylate with Eu(3+). The data show that pyromellitic acid is a suitable model for the study of metal-mediated polymerization as a crucial factor in determining the effect of humic acids on the mobility of heavy metals in the environment.  相似文献   

12.
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40  in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60  and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.  相似文献   

13.
The coordination and speciation of selenate (SeO(4)) and sulfate (SO(4)) on goethite and Al oxide were studied using Raman and ATR-FTIR spectroscopy. Raman spectra were collected from pastes of suspensions containing 4 mM SeO(4) or SO(4). For SO(4), complementary data were collected by ATR-FTIR spectroscopy in goethite systems with 1 mM SO(4) and in Al oxide systems with 4 mM SO(4). The combined data set of Raman and ATR-FTIR spectra indicate that both inner- and outer-sphere surface complexes of SeO(4) and SO(4) occur on these metal (hydr)oxide surfaces. These spectral data show that SeO(4) and SO(4) have a similar complexation behavior on the same adsorbent. On goethite, these form predominantly monodentate inner-sphere surface complexes at pH <6, while at pH >6 these anions exist predominantly as outer-sphere surface complexes. On Al oxide, in contrast, these anions exist predominantly as outer-sphere surface complexes, but a small fraction is also present as an inner-sphere complex at pH <6. A comparison of the spectral intensities of these anions on goethite and Al oxide shows that complexation of these anions with Al oxide is weaker than with Fe oxide. Copyright 2000 Academic Press.  相似文献   

14.
Chung KH  Lee W  Cho YH  Choi GS  Lee CW 《Talanta》2005,65(2):389-395
The complexation of europium ion (Eu(III)) with a soil fulvic acid (FA) has been studied at pH 5 in 0.01 M NaClO4 by different experimental methods, i.e. synchronous fluorescence spectroscopy (SyFS) and time resolved laser-induced fluorescence spectroscopy (TRLFS). A series of SyFS quenching spectra was obtained by increasing the Eu(III) concentration and keeping the FA concentration constant. The emission spectra and fluorescence lifetimes of the Eu(III) bound to the FA were also measured by a TRLFS system using the same solution used in the SyFS spectral measurement. From the analysis of the fluorescence data obtained by the SyFS and the TRLFS using a non-linear least-squares method, the concentration of the binding sites (CL) of the FA accessible for the Eu(III) and the corresponding conditional stability constants (log K) were estimated. The two different methods gave rise to constants being comparable with one another. The log K and CL values (mean ± standard deviation of three determinations) determined by the SyFS were 6.4 ± 0.2 (6.7 ± 0.1 μmol L−1: by the TRLFS) and 10 ± 1 μmol L−1 (7 ± 1 μmol L−1: by the TRLFS), respectively. The applicability of the FA fluorescence quenching techniques for estimating the europium binding parameters was proved by the direct monitoring of the Eu(III) bound to the FA using the TRLFS system.  相似文献   

15.
Cm(III) interaction with calcite was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) in the trace concentration range. Two different Cm(III)/calcite sorption species were found. The first Cm(III) sorption species consists of a curium ion bonded onto the calcite surface. The second Cm(III) sorption species has lost its complete hydration sphere and is incorporated into the calcite bulk structure. The Cm(III)/calcite complexes are characterized by their emission spectra (peak maxima at 607.5 and 618.0 nm) and their fluorescence emission lifetimes (314+/-6 and 1302+/-75 micros).  相似文献   

16.
Little spectroscopic evidence exists in the literature describing the surface complexation of cadmium (Cd) and lead (Pb) on kaolinite, the dominant clay mineral present in highly weathered soils of tropical and humid climates. X-ray absorption fine structure (XAFS) spectroscopy data at the Cd K and Pb L(III) edges were collected on Cd- and Pb-sorbed kaolinite samples and compared to a suite of reference materials including Pb and Cd sorbed on amorphous (am-)gibbsite. Cadmium formed dominantly (>75%) outer sphere complexes on kaolinite and a small fraction of CdOHCl complexes. In contrast Cd adsorbed as an inner sphere complex on gibbsite, suggesting that the Si tetrahedral sheet hindered Cd sorption to the Al octahedral sheet on kaolinite. Lead formed polymeric complexes, which bonded to kaolinite via edge sharing with surface Al octahedra. Two distinct Pb-Al edge-sharing distances on am-gibbsite, as opposed to one on kaolinite, suggested a similar steric hindrance effect for the surface complexation of polymeric Pb complexes on kaolinite. The results of this study show that the Si tetrahedral sheet limited the surface complexation of Cd and Pb on kaolinite, elevating kaolinite's permanent negative charge properties in retaining these heavy metals at its surface.  相似文献   

17.
Zhang S  Wu K  Biewer MC  Sherry AD 《Inorganic chemistry》2001,40(17):4284-4290
Lanthanide complexes of a tetra-amide derivative of DOTA (structure 4 in text) with four extended carboxymethyl esters have been characterized by X-ray crystallography and multinuclear NMR spectroscopy. [Eu(4)(H(2)O)](triflate)(3) crystallized from water in the monoclinic, P(21/)(c) space group (a = 10.366 A, b = 22.504 A, c = 23.975 A, and beta = 97.05 degrees ). The Eu(3+) cation is bound to four macrocyclic nitrogen atoms (mean Eu-N = 2.627 A) and four amide oxygen atoms (mean Eu-O(amide) = 2.335 A) in a square antiprismatic geometry with a twist angle of 38.5 degrees between the N4 and O4 planes. A single bound water molecule (Eu-O(W) = 2.414 A) occupies a typical monocapped position on the O4 surface. In pure water, resonances corresponding to a single Eu(3+)-bound water molecule were observed in the (1)H (53 ppm) and (17)O (-897 ppm) NMR spectra of [Eu(4)(H(2)O)](triflate)(3) at 25 degrees C. A fit of the temperature-dependent Eu(3+)-bound (1)H and (17)O water resonance line widths in acetonitrile-d(3) (containing 4% v/v (17)O enriched water) gave identical lifetimes (tau(m)(298)) of 789 +/- 50 micros (in water as solvent; a line shape analysis of the Eu(3+)-bound water resonance gave a tau(m)(298) = 382 +/- 5 micros). Slow water exchange was also evidenced by the water proton relaxivity of Gd(4) (R(1) = 2.2 mM(-1) s(-1), a value characteristic of pure outer-sphere relaxation at 25 degrees C). With increasing temperature, the inner-sphere contribution gradually increased due to accelerated chemical exchange between bound water and bulk water protons. A fitting of the relaxation data (T(1)) to standard SBM theory gave a water proton lifetime (tau(m)(298)) of 159 micros, somewhat shorter than the value determined by high-resolution (1)H and (17)O NMR of Eu(4). Exchange of the bound water protons in Gd(4) with bulk water protons was catalyzed by addition of exogenous phosphate at 25 degrees C (R(1) increased to 10.0 mM(-1) s(-1) in the presence of 1500-fold excess HPO(4)(2-)).  相似文献   

18.
The complexation of the lanthanide Eu(III) and the actinides Cm(III) and Am(III) by N3- was investigated by application of time-resolved laser fluorescence spectroscopy (TRLFS) and X-ray absorption spectroscopy (XAFS) in the ionic liquid solution of C4mimTf2N (1-butyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide). TRLFS measurements show that the interaction of azide with Eu(CF3SO3)3 and Eu(ClO4)3 results in both dynamic luminescence quenching by collisional encounters of N3- with Eu(III) and static luminescence quenching by inner-sphere complexation of Eu(III) by N3-. Hereby, the complexation of Eu-triflate by azide starts at a lower N3- concentration as compared to the perchlorate salt. The authors ascribe this phenomenon to a stronger bonding of ClO4- toward the metal ion than triflate, as well as to a stronger electrostatic repulsion of N3- by the perchlorate ligand. In both actinide samples (Cm(ClO4)3, Am(ClO4)3), the complexation with azide exhibits a clear kinetic hindrance. Nevertheless, mixed actinide-perchlorate-azide complexes are formed after several days in C4mimTf2N. The different reaction kinetics for the Ln- and An-complexation by azide may provide the opportunity for an effective separation of lanthanides from actinides in the nuclear fuel cycle by the use of N-based extractants in ionic liquid solution.  相似文献   

19.
The adsorption of cadmium onto kaolinite and Muloorina illite in the presence of citric acid has been measured as a function of pH and cadmium concentration at 25 degrees C. When citric acid is present in the systems cadmium adsorption is slightly enhanced below pH 5, but significantly suppressed between pH 5 and 8, for both substrates. At higher citric acid concentrations very little cadmium adsorbs onto kaolinite from pH 5 to 8. Above pH 8 adsorption of Cd(II) onto illite is enhanced in the presence of citric acid, especially at lower concentrations, but this does not occur for kaolinite. Adsorption and potentiometric titration data were fitted by simple extended constant-capacitance surface complexation models for the two substrates. Enhancement of adsorption at lower pH values was ascribed to the ternary reaction [X(-)--K(+)](0)+Cd(2+)+L(3-)+2H(+) right arrow over left arrow (0)+K(+) involving outer-sphere complexation with permanently charged X(-) sites on the "silica" faces of both clay minerals. The models suggested that suppression of adsorption in the intermediate pH range was due to the formation of a strong CdL(-) solution complex which adsorbed neither on the permanently charged sites nor on the surface hydroxyl groups at the edges of the clay crystals. At higher pH values the dominant solution complex, CdLOH(2-), apparently adsorbed as an outer-sphere complex at surface hydroxyl groups on illite, SOH+2Cd(2+)+L(3-) right arrow over left arrow [SOCd(+)--CdOHL(2-)](-)+2H(+), but not on kaolinite. This difference in behavior results from the presence of =FeOH groups on the illite surface which can form surface complexes with CdLOH(2-), while the =AlOH groups on the kaolinite surface cannot.  相似文献   

20.
We investigated the As(III) and As(V) adsorption complexes forming at the gamma-Al(2)O(3)/water interface as a function of pH and ionic strength (I), using a combination of adsorption envelopes, electrophoretic mobility (EM) measurements, and X-ray absorption spectroscopy (XAS). The As adsorption envelopes show that (1) As(III) adsorption increases with increasing pH and is insensitive to I changes (0.01 and 0.8 M NaNO(3)) at pH 3-4.5, while adsorption decreases with increasing I between pH 4.5 and 9.0, and (2) As(V) adsorption decreases with increasing pH and is insensitive to I changes at pH 3.5-10. The EM measurements show that As(III) adsorption does not significantly change the EM values of gamma-Al(2)O(3) suspension in 0.1 M NaNO(3) at pH 4-8, whereas As(V) adsorption lowered the EM values at pH 4-10. The EXAFS data indicate that both As(III) and As(V) form inner-sphere complexes with a bidentate binuclear configuration, as evidenced by a As(III)-Al bond distance of congruent with3.22 ? and a As(V)-Al bond distance of congruent with3.11 ?. The As(III) XANES spectra, however, show that outer-sphere complexes are formed in addition to inner-sphere complexes and that the importance of outer-sphere As(III) complexes increases with increasing pH (5.5 to 8) and with decreasing I. In short, the data indicate for As(III) that inner- and outer-sphere adsorption coexist whereas for As(V) inner-sphere complexes are predominant under our experimental conditions. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号