首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

2.
This investigation had multiple goals. One goal was to obtain definitive information about the heat transfer characteristics of co-axial impinging jets, and this was achieved by measurements of the stagnation-point, surface-distribution and average heat transfer coefficients. These results are parameterized by the Reynolds number Re which ranged from 5000 to 25,000, the dimensionless separation distance between the jet exit and the impingement plate H/D (4–12), and the ratio of the inner diameters of the inner and outer pipes d/D (0–0.55). The d/D = 0 case corresponds to a single circular jet. The other major goal of this work was to quantify the velocity field of co-axial free jets (impingement plate removed). The velocity-field study included both measurements of the mean velocity and the turbulence intensity.It was found that the variation of the stagnation-point heat transfer coefficient with d/D attained a maximum at d/D = 0.55. Furthermore, the variation of the local heat transfer coefficient across the impingement surface was more peaked for d/D = 0 and became flatter with decreasing d/D. This suggests that for cooling a broad expanse of surface, co-axial jets of high d/D are preferable. On the other hand, for localized cooling, the single jet (d/D = 0) performed the best. In general, for a given Reynolds number, a co-axial jet yields higher heat transfer coefficients than a single jet. Off-axis velocity peaks were encountered for the jets with d/D = 0.105. The measurements of turbulence intensity yielded values as high as 18%.  相似文献   

3.
Convective heat transfer characteristics of laminar pulsating pipe air flow   总被引:6,自引:0,他引:6  
 Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1–4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17–25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1–17 Hz and a reduction up to 20% for pulsation frequency range of 25–29.5 Hz for Reynolds numbers range of 780–1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750 < Re < 2000) and the dimensionless frequency (3<Ω<18) with about 10% rms. Received on 16 May 2000 / Published online: 29 November 2001  相似文献   

4.
5.
Experimental investigations on pressure distributions and average heat transfer on square cylinders due to slot jet impingement have been carried out for different parameters such as, slot jet-width, distance of the square cylinder from the nozzle exit, angle of inclination of the cylinder to the jet axis and Reynolds numbers. The minimum value of the pressure coefficient is obtained on the lower face at an angle of inclination of 15° for all distances of the square cylinder from the nozzle exit. At the lowest Reynolds number the maximum average heat transfer rate is obtained at a distance of eight times the jet width from the nozzle exit. An increasing trend of the heat transfer rate is observed for higher Reynolds numbers. The maximum value of the heat transfer rate is obtained between the angles of inclination of 15° and 30° of the square cylinder to the jet axis. A correlation for the average Nusselt number is proposed in terms of the relevant non-dimensional parameters.
Experimentelle Untersuchung der Strömungs- und Wärmeübergangscharakteristik bei Schlitzdüsenanblasung eines quadratischen Zylinders
Zusammenfassung Druckverteilung und gemittelter Wärmeübergang bei Schlitzanblasung eines quadratischen Zylinders wurden experimentell für folgende Parameter untersucht: Schlitzbreite; Abstand Düsenmündung vom Zylinder; Neigungswinkel des Zylinders zur Strahlachse; Reynoldszahl. Den Minimalwert des Druckkoeffizienten erhält man für alle Abstände an der Unterseite (bei einem Neigungswinkel von 15°). Bei der niedrigsten Reynoldszahl tritt der höchste Wert des gemittelten Wärmestroms in einem Abstand Düsenmündung/Zylinder von 8 Strahlbreiten auf. Mit steigender Reynoldszahl nimmt der Wärmestrom zu. Dessen höchster Wert tritt im Bereich 15 bis 30° des Neigungswinkels zwischen Zylinder und Strahlachse auf. Eine die Meßwerte korrelierende Nusscltbeziehung als Funktion dimensionsloser Parameter wird angegeben.

Nomenclature A surface area of the square cylinder - a width of the square cylinder - C p pressure coefficient=(p–p a )/ - C pb base pressure coefficient=(p b –p a )/ - h f free convection heat transfer coefficient - average heat transfer coefficient - k thermal conductivity of air - L distance of the axis of the square cylinder from the nozzle exit - l length of the square cylinder - Pr Prandtl number - p static pressure - p a atmospheric pressure - p b base pressure on the rear face - Nu f free convection Nusselt number - average Nusselt number - q heat loss - q f heat loss due to free convection - Re Reynolds number=u j W/v a - T a ambient air temperature - average surface temperature - u j average jet velocity at the nozzle exit - W nozzle width - angle of inclination of the square cylinder to the jet axis in degrees - a kinematic viscosity of air - a density of air  相似文献   

6.
Experimental investigations on flow characteristics and average heat transfer due to slot jet impinging on a rectangular cylinder have been carried out for different non-dimensional parameters. The minimum value of the pressure coefficient is found on the lower face of the rectangular cylinder at an angle of inclination of 15°. Drag coefficient calculated from the measured pressure distribution is found to be maximum within a range of breadth/width ratio of 0.67 to 1.5 of rectangular cylinders. The maximum value of heat transfer rate is obtained at the angle of inclination of 15° of the cylinder to the jet axis. An increasing trend of heat transfer rate is observed with higher Reynolds numbers. A correlation of average Nusselt number is presented for rectangular cylinders.
Experimentelle Untersuchung der Strömungs- und Wärmeübergangs-charakteristik eines auf einen rechteckigen Zylinder auftreffenden Strahls aus einer Schlitzdüse
Zusammenfassung Es wurden experimentelle Untersuchungen des Strömungs- und Wärmeübergangsverhaltens an einem rechteckigen, durch einen Strahl aus einer Schlitzdüse beaufschlagten Zylinders für verschiedene dimensionslose Parameter durchgeführt. Der Kleinstwert des Druckbeiwertes tritt an der Unterfläche des rechteckigen Zylinders bei einem Neigungswinkel von 15° auf. Der ausder gemessenen Druckverteilung berechnete Widerstandsbeiwert erreicht bei einem Breiten-Dicken-Verhältnis des Zylinders zwischen 0,67 und 1,5 Maximalwerte. Den maximalen Wärmestrom erhält man bei einem Neigungswinkel zwischen Zylinder und Strahlachse von 15°. Mit steigenden Reynoldszahlen erhöht sich der abgeführte Wärmestrom. Eine Korrelation für die mittlere Nusseltzahl an rechteckigen Zylindern wird mitgeteilt.

Nomenclature A surface area of the rectangular cylinder - a width of the rectangular cylinder - b breadth of the rectangular cylinder - C D drag coefficient =D/ - C p pressure coefficient = (p – p a )/ - C pb base pressure coefficient = (p b p a )/ - D drag force - h f free convection heat transfer coefficient - average heat transfer coefficient - k thermal conductivity of air - L distance of the axis of the square cylinder from the nozzle exit - l length of the rectangular cylinder - Pr Prandtl number - p static pressure - P a atmospheric pressure - P b base pressure on the rear face - Nu f free convection Nusselt number - average Nusselt number - q heat loss - q f heat loss due to free convection - Re Reynolds number =u j W/ a - T a ambient air temperature - average surface temperature - u j average jet velocity at the nozzle exit - W nozzle width - angle of inclination of the rectangular cylinder to the jet axis in degrees - a kinematic viscosity of air - a density of air  相似文献   

7.
 Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs. Received on 21 November 2000 / Published online: 29 November 2001  相似文献   

8.
Hybrid RANS/LES of flow and heat transfer in round impinging jets   总被引:1,自引:0,他引:1  
Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of Wilcox (2008) and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of Davidson and Peng (2003) and Kok et al. (2004). The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by Batten et al. (2004). The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model.The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of the jet core. This also results in overprediction of the heat transfer rate in the impingement zone caused by too big temperature gradients at impingement.All hybrid RANS/LES models are able to correct the heat transfer overprediction of the RANS model. For good predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, the essence is to capture the evolution and breakup of the flow unsteadiness in the shear layer of the jet, so that accurate mean and fluctuating velocity profiles are obtained in the impingement region. Although the models have a quite different theoretical justification and generate a quite different eddy viscosity in some flow regions, their overall results are very comparable. The reason is that in zones that are crucial for the results, the models behave similarly.  相似文献   

9.
Heat transfer characteristics to both laminar and turbulent pulsating pipe flows under different conditions of Reynolds number, pulsation frequency, pulsator location and tube diameter were experimentally investigated. The tube wall of uniform heat flux condition was considered for both cases. Reynolds number varied from 750 to 12,320 while the frequency of pulsation ranged from 1 to 10 Hz. With locating the pulsator upstream of the inlet of the test section tube, results showed an increase in heat transfer rate due to pulsation by as much as 30% with flow Reynolds number of 1,643 and pulsation frequency of 1 Hz, depending on the upstream location of the pulsator valve. Closer the valve to the tested section inlet, the better improvement in the heat transfer coefficient is achieved. Upon comparing the heat transfer results of the upstream and the downstream pulsation, at Reynolds number of 1,366 and 1,643, low values of the relative mean Nusselt number were obtained with the upstream pulsation. Comparing the heat transfer results of the two studied test sections tubes for Reynolds number range from 8,000 to 12,000 and pulsation frequency range from 1.0 to 10 Hz showed that more improvement in heat transfer rate was observed with a larger tube diameter. For Reynolds number ranging from 8,000 to 12,000 and pulsation frequency of 10 Hz, an improvement in the relative mean Nusselt number of about 50% was obtained at Reynolds number of 8,000 for the large test section diameter of 50 mm. While, for the small test section diameter of 15 mm, at same conditions of Reynolds number and frequency, a reduction in the relative mean Nusselt number of up to 10% was obtained.  相似文献   

10.
The present article reports on heat transfer characteristics associated with multiple laminar impinging air jet cooling a hot flat plat at different orientations. The work aims to study the interactions of the effects of cross flow, buoyancy induced flow, orientation of the hot surface with respect to gravity, Reynolds numbers and Rayleigh numbers on heat transfer characteristics. Experiments have been carried out for different values of jet Reynolds number, Rayleigh number and cross flow strength and at different orientations of the air jet with respect to the target hot plate. In general, the effective cooling of the plate has been observed to be increased with increasing Reynolds number and Rayleigh number. The results concluded that the hot surface orientation is important for optimum performance in practical applications. It was found that for Re ≥ 400 and Ra ≥ 10,000 (these ranges give 0.0142 ≤ Ri ≤ 1.59 the Nusselt number is independent on the hot surface orientation. However, for Re ≤ 300 and Ra ≥ 100,000 (these ranges give 1.59 ≤ Ri ≤ 42.85): (i) the Nusselt number for horizontal orientation with hot surface facing down is less that that of vertical orientation and that of horizontal orientation with hot surface facing up, and (ii) the Nusselt number of vertical orientation is approximately the same as that of horizontal orientation with hot surface facing up. For all surfaces orientations and for the entire ranges of Re and Ra, it was found that increasing the cross flow strength decreases the effective cooling of the surface.  相似文献   

11.
A computational investigation is carried out to study the flow and heat transfer from a row of circular jets impinging on a concave surface. The computational domain simulates the impingement cooling zone of a gas turbine nozzle guide vane. The parameters, which are varied in the study include jet Reynolds number (Re d = 5000–67800), inter-jet distance to jet diameter ratio (c/d = 3.33 and 4.67) and target plate distance to jet diameter ratio (H/d = 1, 3 and 4). The flow field, predicted with K-ω turbulence model and using Fluent 6.2.16, is characterized with the presence of a pair of counter rotating vortices, an upwash fountain flow and entrainment. The local pressure coefficient and Nusselt number variations along the concave plate are presented and these values are found to under predict the available experimental data by about 12%.  相似文献   

12.
Numerical studies are made of flow and heat transfer characteristics of a pulsating flow in a pipe. Complete time-dependent laminar boundary-layer equations are solved numerically over broad ranges of the parameter spaces, i.e., the frequency parameter β and the amplitude of oscillation A. Recently developed numerical solution procedures for unsteady boundary-layer equations are utilized. The capabilities of the present numerical model are satisfactorily tested by comparing the instantaenous axial velocities with the existing data in various parameters. The time-mean axial velocity profiles are substantially unaffected by the changes in β and A. For high frequencies, the prominent effect of pulsations is felt principally in a thin layer near the solid wall. Skin friction is generally greateer than that of a steady flow. The influence of oscillation on skin friction is appreciable both in terms of magnitude and phase relation. Numerical results for temperature are analyzed to reveal significant heat transfer characteristics. In the downstream fully established region, the Nusselt number either increases or decreases over the steady-flow value, depending on the frequency parameter, although the deviations from the steady values are rather small in magnitude for the parameter ranges computed. The Nusselt number trend is amplified as A increases and when the Prandtl number is low below unity. These heat transfer characteristics are qualitatively consistent with previous theoretical predictions.  相似文献   

13.
Computational investigations are reported on the local flow and heat transfer characteristics from staggered, multiple circular air jets impinging on a flat surface with effusion holes. The geometrical and flow parameters for the computational study are chosen as per the experimental arrangement of Cho and Rhee J Turbomachinery 123:601–608, (14) so as to explain salient features observed in these experiments. The two peaks in the Nusselt number observed in the case of H/D = 6 and three peaks in the case of H/D = 2 are attributed to the flow characteristics such as primary vortices forming an up-wash region, followed by secondary vortices resulting in a secondary stagnation zone. The magnitude of local peak in heat transfer increases up to 88% with increasing values of D/d from 0.5 to 1.5 at Re = 10,000.  相似文献   

14.
High velocity impinging air jets are commonly used for heating, cooling and drying, etc. because of the high heat and mass transfer coefficients which are developed in the impingement region. In order to provide data for the designers of industrial equipment, a variety of slot nozzles were tested to determine the effect on heat transfer of both nozzle shape and slot width. A large multi-nozzle rig was also used to measure average heat and mass transfer characteristics under arrays of both slot nozzles and circular holes. As a necessary preliminary to the heat transfer investigation, the discharge coefficients of the nozzles were measured. Then, the experimental results are compared with the simplified flow model. A good agreement was found between the theoretical and experimental results. From the tests, it was also found that the heat transfer results from differently shaped nozzles could be satisfactorily correlated provided that the effective slot width or hole diameter was used to characterize the nozzle shapes.  相似文献   

15.
16.
An experimental investigation of the convective heat transfer on a flat surface in a multiple-jet system is described. A thin metal sheet was heated electrically and cooled from one side. On the other black coated side the temperature field was measured using an IR camera. Varied parameters were the jet Reynolds number in the range from 1,400 to 41,400, the normalized distance nozzle to sheet H/d from 1 to 10, and the normalized nozzle spacing S/d from 2 to 10. A geometrical arrangement of nine nozzle in-line arrays was tested. The results show that the multiple-jet system enhances the local and average heat transfer in comparison with that of a single nozzle. A maximum of the heat transfer was found for the normalized spacing S/d = 6.0. The normalized distance H/d has nearly no effect on the heat transfer in the range 2 ≤ H/d ≤ 4. The maximum average Nusselt number was correlated as a function of the jet Reynolds number   相似文献   

17.
The flow characteristics of both confined and unconfined air jets, impinging normally onto a flat plate have been experimentally investigated. The mean and turbulence velocities, and surface pressures were measured for Reynolds numbers ranging from 30,000 to 50,000 and the nozzle-to-plate spacings in range of 0.2–6. Smoke-wire technique is used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and flow confinement on the flow structure are reported. In the case of confined jet, subatmospheric regions occur on both impingement and confinement surfaces at nozzle-to-plate spacings up to 2 for all Reynolds numbers in consideration and they lie up to nearly the same radial location at both surfaces. However, there is no evidence of the subatmospheric region in unconfined jet. It is concluded that there exists a linkage among the subatmospheric region, turbulence intensity and the peaks in heat transfer coefficients for low spacings in impinging jets.  相似文献   

18.
This paper describes an experimental investigation at Reynolds number equal to 5000 on circular and chevron impinging jets by means of time-resolved tomographic particle image velocimetry (TR-TOMO PIV) and infrared (IR) thermography. TR-TOMO PIV experiments are performed at kilo-hertz repetition rate in a tailored water jet facility where a plate is placed at a distance of 4 diameters from the nozzle exit. Using air as working fluid, time-averaged convective heat transfer is measured on the impinged plate by means of IR thermography with the heated-thin-foil heat transfer sensor for nozzle-to-plate distances ranging from 2 to 10 diameters. The circular impingement shows the shedding and pairing of axisymmetric toroidal vortices with the later growth of azimuthal instabilities and counter-rotating streamwise vortices. In the chevron case, instead, the azimuthal coherence is replaced by counter-rotating pairs of streamwise vortices that develop from the chevron notches. The heat transfer performances of the chevron impingement are compared with those of the circular one, analyzing the influence of the nozzle-to-plate distance on the distribution of Nusselt number. The chevron configuration leads to enhanced heat transfer performances for all the nozzle-to-plate distances hereby investigated with improvements up to 44% at the center of the impinged area for nozzle-to-plate distance of 4. Such enhancements are discussed in relation to the streamwise structures that, compared with the toroidal vortices, are associated with an earlier penetration of turbulence towards the jet axis and a higher arrival speed.  相似文献   

19.
In the present study, the effects of diverse situations of confinement on heat transfer from single and array-circular jet impingements are carefully investigated over various heat transfer regimes of single-phase convection and fully developed nucleate boiling. For the single, circular, unconfined free-surface jet, the transition to turbulence was observed to start around x/d = 5.5 and end around x/d = 9. For the array-circular jet, however, the wall jet structure yielded no transition to turbulence for all the tested cases, instead monotonically decreasing the convection coefficient. Conversely, the single-circular jet experienced the transition for V ? 6.1 m/s. For the confined submerged jet, the transition length was very short due to the vigorous mixing driven by lateral velocity components, and the locus of the secondary peak moved downstream as velocity increased. The temperature distributions of the confined array-circular jet were fairly uniform over the whole heated surface. The averaged single-phase convection coefficients indicated that the confined jet provided the most uniform convection in the lateral direction.  相似文献   

20.
A series of experiments has been conducted in which a pulsed air jet is impinged upon a heated surface for the purpose of enhancing heat transfer relative to the corresponding steady air jet. Traditional variables such as jet to plate spacing, Reynolds number, and pulse frequency have been investigated. One additional flow variable – the duty cycle – representing the ratio of pulse cycle on-time to total cycle time is introduced and shown to be significant in determining the level of heat transfer enhancement. Specifically, heat transfer enhancement exceeding 50% is shown for a variety of operating conditions. In each case, the duty cycle producing the best heat transfer is shown to depend upon each of the other flow parameters. Recommendations are made for further experimentation into optimizing the duty cycle parameter for any particular application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号