首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper uniform asymptotic expansions for the solutions of a system of differential equations are obtained in the domain containing a shock wave. It is shown, in particular, that the function θ(t,x)/ε contained in the expansions and describing the behavior of the solution in the neighborhood of the wave front has, generally speaking, a discontinuity of derivatives at the front. The results are applicable to one-dimensional problems in gas dynamics with low viscosity and heat-conductivity.  相似文献   

2.
A second order non-linear ordinary differential equation satisfied by a homogeneous function of u and v where u is a solution of the linear equation ÿ + p(t)ÿ + r(t)y = 0 and v = ωu, ω being an arbitrary function of t, is obtained. Defining ω suitably in two specific cases, solutions are obtained for a non-linear equation of the form ÿ + p(t)ÿ + q(t)y = μÿ2y−1 + f(t)yn where μ ≠ 1, n≠ 1. Applying our results, some classes of equations of the above type possessing solutions involving two or one or no arbitrary constants are derived. Some illustrative examples are also discussed.  相似文献   

3.
Asymptotic soliton trains arising from a ‘large and smooth’ enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup–Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr–Sommerfeld quantization rule which generalizes the usual rule to the case of ‘two potentials’ h0(x) and u0(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u0(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup–Boussinesq equations with predictions of the asymptotic theory is found.  相似文献   

4.
The Fokker-Planck equation is used to develop a general method for finding the spectral density and other properties of first order systems governed by stochastic differential equations of the form
dx/dt + f(x)[1 + m(t)] = n(t)
, where f(x) is piecewise linear and m(t) and n(t) represent stationary Gaussian white noise. The method is similar to one used by the authors to deal with the case m(t) = 0, but is complicated by the possible existence of irregular (singular) points of the Fokker-Planck equation. Graphical results for some special cases are presented.  相似文献   

5.
With reference particularly to the work of Peter Bradshaw and his associates, some remarks are made about the recovery of previously distorted shear flows. It is emphasized that such recovery is usually extremely slow, and this is further illustrated by new measurements of the velocity field and turbulence structure in the relaxing flow downstream of a separated region. Data have been obtained for downstream distances (x) up to about 20 times the length of the separated region (xr), or about 75 times the flow thickness at reattachment. This is a significantly more extensive region than has been previously studied, and the data are more comprehensive than any previously available.

It is shown that the recovery is even slower than previously surmized. Furthermore, the measurements demonstrate that the turbulence stresses eventually fall below standard boundary-layer values (at the same Reynolds number), although around reattachment they are very much higher, having values more akin to those in plane mixing layers. This undershoot is apparently a new finding and is argued to be a result of the influence of the outer part of the flow on the growing inner region. The usual log-law only begins to appear beyond x/xr = 2.5. It effectively “sees” a turbulent outer region that recovers even more slowly than itself, and the response of the inner region therefore has similarities to the response of an ordinary boundary layer to free-stream turbulence.

It is concluded that even current second-order (i.e., Reynolds stress) models may not capture the exquisitely slow decay of the strong, large eddy motions in the outer part of the flow and the subtleties of their influence on the inner region.  相似文献   


6.
This article presents a theory of how the melt region advances as an intrusion layer along the top boundary of a solid phase-change material that is heated from the side. The phase-change material fills the pores of a solid matrix. We show that the thickness of the horizontal melt layer increases as x3/5, where x is the horizontal distance measured by from the leading edge of the layer. The total length of the intrusion layer increases as t3/4, and as Tmax5/4. Finite-difference simulations of convection melting in the Darcy-Rayleigh number range of 200–800 agree with the theoretical results. We also show that in a rectangular porous medium heated from the side, the size of the entire melt region is dominated by the melting contributed by the horizontal intrusion layer, if the time is great enough so that the group (Ste Fo)3/4 is greater than 1.  相似文献   

7.
The near wake structure of a square cross section cylinder in flow perpendicular to its length was investigated experimentally over a Reynolds number (based on cylinder width) range of 6700–43,000. The wake structure and the characteristics of the instability wave, scaling on θ at separation, were strongly dependent on the incidence angle () of the freestream velocity. The nondimensional frequency (Stθ) of the instability wave varied within the range predicted for laminar instability frequencies for flat plate wakes, jets and shear layers. For = 22.5°, the freestream velocity was accelerated over the side walls and the deflection of the streamlines (from both sides of the cylinder) towards the center line was higher compared to the streamlines for = 0°. This caused the vortices from both sides of the cylinder to merge by x/d 2, giving the mean velocity distribution typical of a wake profile. For = 0°, the vortices shed from both sides of the cylinder did not merge until x/d 4.5. The separation boundary layer for all cases was either transitional or turbulent, yet the results showed good qualitative, and for some cases even quantitative, agreement with linearized stability results for small amplitude disturbances waves in laminar separation layers.  相似文献   

8.
A new similarity transformation has been devised for extensive studies of accelerating non-Newtonian film flow. The partial differential equations governing the hydrodynamics of the flow of a power-law fluid down along an inclined plane surface are transformed into a set of two ordinary differential equations by means of the dimensionless velocity component approach. Although the analysis is applicable for any angle of inclination (0<π/2), the resulting one-parameter problem involves only the power-law index n. Nevertheless, physically essential quantities, like the velocity components and the skin-friction coefficient, do depend on and relevant relationships are deduced between the vertical and inclined cases. Accurate numerical similarity solutions are provided for n in the range from 0.1 to 2.0. The present method enables solutions to be obtained also for highly pseudo-plastic films, i.e. for n below 0.5. The mass flow rate entrained into the momentum boundary layer from the inviscid freestream is expressed in terms of a dimensionless mass flux parameter Φ, which depends on the dimensionless boundary layer thickness and the velocity components at the edge of the viscous boundary layer. Φ, which is thus an integral part of the similarity solution, turns out to decrease monotonically with n. This parameter is of particular relevance in the determination of the streamwise position at which the entire freestream has been entrained and viscous stresses prevail all the way to the free surface of the film. A short-cut method to facilitate rapid and yet accurate estimates of the mass flux parameter is developed to this end.  相似文献   

9.
Gill and Sankarasubramanian's analysis of the dispersion of Newtonian fluids in laminar flow between two parallel walls are extended to the flow of non-Newtonian viscoelastic fluid (known as third-grade fluid) using a generalized dispersion model which is valid for all times after the solute injection. The exact expression is obtained for longitudinal convective coefficient K1(Γ), which shows the effect of the added viscosity coefficient Γ on the convective coefficient. It is seen that the value of the K1(Γ) for Γ≠0 is always smaller than the corresponding value for a Newtonian fluid. Also, the effect of the added viscosity coefficient on the K2(t,Γ) (which is a measure of the longitudinal dispersion coefficient of the solute) is explored numerically. Finally, the axial distribution of the average concentration Cm of the solute over the channel cross-section is determined at a fixed instant after the solute injection for several values of the added viscosity coefficient.  相似文献   

10.
This paper reports numerical results of two-dimensional double-diffusive natural convection in a square porous cavity partially heated from below while its upper surface is cooled at a constant temperature. The vertical walls of the porous matrix are subjected to a horizontal concentration gradient. The parameters governing the problem are the thermal Rayleigh number (Ra=100 and 200), the Lewis number (Le=0.1, 1 and 10), the buoyancy ratio (−10N10) and the relative position of the heating element with respect to the vertical centerline of the cavity (δ=0 and 0.5). The effect of the governing parameters on fluid characteristics is analyzed. The multiplicity of solutions is explored and the existence of asymmetric bicellular flow is proved when the heated element is shifted towards a vertical boundary (δ=0.5). The solutal buoyancy forces induced by horizontal concentration gradient lead to the elimination of the multiplicity of solutions obtained in pure thermal convection when N reaches some threshold value which depends on Le and Ra.  相似文献   

11.
The problem of determining the transient response of a non-linear oscillator of the form ü + u = εƒ(u,u) + E(t) is studied by the method of multiple time scales, using the symbolic computation system MACSYMA. when the excitation E(t) consists of a finite number of harmonic forcing terms. Here ε is a small parameter and ƒ(u,u) is a non-linear function of its arguments. In particular, the Van der Pol and Duffing oscillators are studied in detail. It is found that when the forcing frequencies are not close to each other or close to the primary resonance of the system, then the response of the system is analogous to the behavior when only one forcing term is present. However, when the forcing frequencies are close to each other or close to the primary resonance, then the behavior is quite different, exhibiting certain oscillations not observed in the case of one forcing term.  相似文献   

12.
We study a Hamiltonian system of coupled oscillators derived from two forced pendulums, connected with a torsional spring. The uncoupled limit is described by two identical oscillators, each possessing a homoclinic orbit separating bounded from unbounded motion. We focus on intermediate energy levels which lead to detained motions, defined as trajectories that, though unbounded as t → ∞, oscillate within the region defined by the homoclinic orbit of the unperturbed system for a long but finite time. We analyze the existence and behavior of these motions in terms of equipotential surfaces. These curves provide bounds on the motion of the system and are shown to be closed for low energies. However, above some critical energy level the equipotential curves become open. The detained trajectories are shown to arise from the region of phase space that was, for appropriate energies, stochastic. These motions remain within this region for long times before finally “leaking out” of the opening in the equipotential curves and proceeding to infinity.  相似文献   

13.
Possible stable subharmonic solutions of the equation
ÿ − k(1 + 2cyy2)ÿ + Y = bkμ cos μt, c > 0
, klarge, are discussed by the techniques used by J.E. Littlewood for van der Pol's equation in Acta Math. 97 (1957), that is the case of the above equation with c = 0 and
, k large. Their variation as c increases is also considered briefly.  相似文献   

14.
15.
We consider the problem of turbulence generation at a vibrating grid in the x2x3 plane. Turbulence diffuses in the x1-direction. Analyzing the multi-point correlation equation using Lie-group analysis, we find three different invariant solutions (scaling laws): classical diffusion-like solution (heat equation like), decelerating diffusion-wave solution and finite domain diffusion due to rotation. All solutions have been obtained using Lie-group (symmetry) methods. It is shown that if only one spatial dimension is considered, models based on Reynolds averaging are only capable to model either the diffusion-like solution or the decelerating diffusion-wave solution. The latter solution is only admitted under certain algebraic constraints on the model constants; e.g. in case of the K– model the model constants need to obey the relation c2σK=2. Turbulent diffusion on a finite domain induced by rotation is not admitted by any of the classical models. Finally, in the appendix it is shown that Lele's transformation (Phys. Fluids 28(1) (1985) 64) leads to a complete analytic solution of the steady diffusion problem modelled by the K– equation.  相似文献   

16.
In the recent years a considerable amount of mathematical work has been devoted to the study of reflected signals obtained by the propagation of pulses in randomly layered media. We refer to [M. Asch, W. Kohler, G. Papanicolaou, M. Postel and B. White, “Frequency content of randomly scattered signals”, SIAM Review 33 (4), 519–625 (1991)] for an extensive survey and applications to inverse problems. The analysis is based on separation of scales between the correlation scale of the inhomogeneities present in the medium, the typical wavelengths of the pulse and the macroscopic variations of the medium. On the other hand, in the context of ultrasounds, time-reversal mirrors have been developed and their effects have been studied experimentally by Mathias Fink and his team at the Laboratoire Ondes et Acoustique (ESPCI-Paris). We refer to: [M. Fink, “Time reversal mirrors”, J. Phys. D: Appl. Phys. 26, 1333–1350 (1993)]. Our goal is to present a mathematical analysis of a time-reversal method for analyzing reflected signals in the model described in [M. Asch, W. Kohler, G. Papanicolaou, M. Postel and B. White, “Frequency content of randomly scattered signals”, SIAM Review 33(4), 519–625 (1991)]. We restrict our analysis to the one-dimensional case, the three-dimensional layered case being the content of a forthcoming paper. It is noticeable that we do not introduce new mathematics in the problem but simply put together an already existing mathematical theory and a new device, the time-reversal mirror.  相似文献   

17.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


18.
In this work, the similarity equation describing the thermal boundary layers of laminar narrow axisymmetric jets is derived based on boundary layer assumptions. The equation is solved exactly. Some properties of the thermal jet are discussed. By introducing new-defined non-dimensional coordinates, the similarity solution results in a “universal” format. The results can also be applied in the boundary layer problem of species diffusion.  相似文献   

19.
John P. Boyd 《Wave Motion》1995,21(4):311-330
“Weakly nonlocal” solitary waves differ from ordinary solitary waves by possessing small amplitude, oscillatory “wings” that extend indefinitely from the large amplitude “core”. Such generalized solitary waves have been discovered in capillarygravity water waves, particle physics models, and geophysical Rossby waves. In this work, we present explicit calculations of weakly nonlocal envelope solitary waves. Each is a sine wave modulated by a slowly-varying “envelope” that itself propagates at the group velocity. Our example is the cubically nonlinear Klein-Gordon equation, which is a model in particle physics (φ4 theory) and in electrical engineering (with a different sign). Both cases have weakly nonlocal“breather” solitons. Via the Lorentz invariance, each breather generates a one-parameter family of nonlocal envelope solitary waves. The φ4 breather was described and calculated in earlier work. This generates envelope solitons which have “wings” that are (mostly) proportional to the second harmonic of the sinusoidal factor. In this article, we calculate breathers and envelope solitary waves for the second, electrical engineering case. Since these, unlike the φ4 waves, contain only odd harmonics, the envelope solitary waves are nonlocal only via the third harmonic.  相似文献   

20.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号