首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The Schiff bases (imines) HL1 and HL2 have been synthesized by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-1,2,4-triazole and 4-amino-3-ethyl-5-mercapto-1,2,4-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes having the general formulae R2MCl(L1), R2MCl(L2), R2M(L1)2, R2M(L2)2, (M = Si, Sn; R = CH3) were synthesized by the reaction of R2MCl2 with these Schiff bases in 1:1 and 1:2 molar ratio. The Schiff bases and their metal complexes have been characterized with the aid of elemental analyses, molar conductance, and spectroscopic studies, including UV, IR, 1H, 13C, MS, 29Si, and 119Sn NMR spectroscopy. On the basis of these studies, the resulting complexes have been proposed to have trigonal bipyramidal and octahedral geometries. In vitro activities of the Schiff bases and their metal complexes against some Gram positive and Gram negative bacteria and fungi have been carried out and described.  相似文献   

2.
Three mononuclear organotin(IV) complexes supported by Schiff bases have been synthesized. The complexes [(C6H5)2Sn(L)] ( 1 ), [(t‐Bu)2Sn(L)] ( 2 ) and [(t‐Bu)2Sn(L')] ( 3 ) (L, L' = deprotonated Schiff bases) were obtained in good yield by the reaction of Schiff bases H 2 L or H 2 L′ with corresponding diorganotin dichlorides respectively. All newly synthesized complexes were characterized by means of FT‐IR spectroscopy, elemental analysis and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. In addition, single crystal X‐ray diffraction analyses were employed to establish the solid state molecular structures of these complexes. The structures of 1 – 3 reveal that all complexes are mononuclear with a five‐coordinated tin(IV) centre in it. The absorption and emission properties of all complexes have been investigated. Moreover, cytotoxicity and fluorescence cell imaging studies of theses complexes have been performed.  相似文献   

3.
A series of triazole‐derived Schiff bases (L1–L5) and their oxovanadium(IV) complexes have been synthesized. The chemical structures of Schiff bases were characterized by their analytical (CHN analysis) and spectral (IR, 1H and 13C NMR and mass spectrometry) data, and oxovanadium(IV) complexes were elucidated by their physical (magnetic susceptibility and conductivity), analytical (CHN analysis), conductance measurements and electronic spectral data. The molar conductivity data indicate the oxovanadium(IV) complexes to be non‐electrolyte. The Schiff bases act as bidentate and coordinate with the oxovanadium(IV)‐forming stoichiometry of a complex as [M (L‐H)2] where M = VO and L = L1–L5 in a square‐pyramidal geometry. The agar well diffusion method was used for in vitro antibacterial screening against E. coli, S. flexenari, P. aeruginosa, S. typhi, S. aureus and B. subtilis and for antifungal activity against T. longifucus, C. albican, A. flavus, M. canis, F. solani and C. glaberata. The biological activity data show the oxovanadium(IV) complexes to be more antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal strains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Summary Some thorium(IV) complexes were synthesized with the tetradentate Schiff base ligands (N2O2 donor set) obtained by the condensation of ethylenediamine with salicylaldehyde (H2salen) or acetylacetone (H2 acacen). In all cases the neutral Schiff bases and not their anions are coordinated to the central thorium(IV) atom. The complexes have the general formula: ThL2Xa (L = H2 salen; X = Cl, Br, 1, NCS and L = lie acacen; X = Cl, 1, NCS, ClO4) or ThLX4 (L = H2 salen; X = NO3, ClO4 and L = H2 acacen; X = Br, NO3). The stoichiometry and coordination number of the complexes was determined on the basis of elemental analysis, conductivity measurements, i.r. spectra and t.g.a./d.t.a. data. The coordination number of the complexes is either 12 or 8 for the bisor monocomplexes respectively.  相似文献   

5.
Summary Binuclear complexes of phenyltin(IV) chlorides with transition metal chelates of tetradentate Schiff bases derived from acetylacetone, benzoylacetone oro-hydroxyacetophenone and ethylenediamine or propylenediamine, of the general formula PhnSnCl4-nML (where n = 1 or 2, M = Ni11 or Cu11 and L2–= the Schiff base dianion), have been synthesised and characterized through elemental analysis, conductance and i.r. spectroscopic data. The coordination of metal chelates to tin involves two triply bonded oxygen atoms giving rise to an octahedral environment around SnIV. The molar conductance of the complexes in nitrobenzene shows the presence of the uncoordinated ML and phenyltin(IV) chloride moieties in solution.Author to whom all correspondence should be directed.  相似文献   

6.
The reactions of a few bifunctional and tridentate Schiff bases with titanium-(IV) and zirconium(IV) isopropoxides in equimolar and bimolar ratios are described. The resulting compounds have been obtained in almost quantitative yields and are of the general formulae M(SB)x(OPri)4?2X (where M = Ti or Zr; SB- = anion of the Schiff base SBH2 and x = 1 or 2). Their molecular weights have been determined ebullioscopically and IR spectra recorded.  相似文献   

7.
Four novel diorganotin(IV) complexes with general formula R2SnL (R = nBu, PhCH2) were synthesized from diorganotin dichlorides and binary Schiff‐bases (H2L) containing N2O2 donor atoms in the presence of sodium ethoxide. The Schiff bases were prepared by reactions of o‐phenylenediamine with 3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzaldehyde (H2L1) and salicylaldehyde (H2L2) respectively. The compounds were characterized by elemental analyses, IR, and NMR spectroscopy. The solid‐state crystal structure of the compound nBu2SnL1 was determined by single‐crystal structural analysis.  相似文献   

8.
《Polyhedron》1999,18(20):2687-2696
Diorganotin(IV) complexes of the general formula R2SnL (R=Ph, n-Bu and Me) have been prepared from diorganotin(IV) dichlorides (R2SnCl2) and tetradentate Schiff bases (H2L) containing N2O2 donor atoms in the presence of triethylamine in benzene. The Schiff bases, H2L, were derived from salicylaldehyde, 3-methoxysalicylaldehyde (o-vanillin), 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and diamines such as o-phenylenediamine and 1,3-propylenediamine. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and elemental analysis. The structure of the complex, n-Bu2Sn(Vanophen), was determined using single crystal X-ray diffraction. The tin atom has a distorted octahedral coordination, with the Vanophen ligand occupying the four equatorial positions and the n-butyl groups in the trans axial positions. Six-coordinated distorted octahedral structures have been proposed for all diorganotin(IV) complexes studied here, as they possess similar spectroscopic data.  相似文献   

9.
The formation constants of some oxovanadium(IV) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline and with its derivatives were determined spectophotometrically. The synthesized compounds were characterized by analytical and different physico-chemical techniques like 1H NMR, IR, elemental analysis, mass and UV-Vis spectral studies. The IR spectra affirm that coordination takes place through azomethine nitrogen and phenolate oxygen. Three of the VO(IV) Schiff base complexes i.e. bis(salicylideneaniline)oxovanadium(IV), [VO(L1)2], bis(salicylidene-4-methoxyaniline) oxovanadium (IV), [VO(L2)2] and bis(salicylidene-4-cyanoaniline)oxovanadium(IV), [VO(L10)2], were studied by thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The number of steps and, in particular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. The complexes screened for antioxidant activity and the ab initio calculations were carried out to determine the structural and the geometrical properties of a typical vanadyl salicylideneaniline complex, [VO(L1)2].  相似文献   

10.
《印度化学会志》2023,100(3):100945
The new dibutyltin(IV) complexes of Schiff bases is designed & synthesis from the interaction between various substituted amines and aromatic aldehyde with general formula Bu2Sn(L1-7)2Cl2. Where L1: (E)-4-chloro-N-(thiophen-2-ylmethylene) aniline; L2: (E)-2-chloro-N-(3,4,5-trimethoxybenzylidene) aniline; L3: (E)-N-((1H-indol-3-yl) methylene)-4-chloro-2-nitroaniline; L4: (E)-4-nitro-N-(3,4,5-trimethoxybenzylidene) aniline; L5: (E)-N-(3,4,5-trimethoxybenzylidene) aniline; L6: (E)-4-nitro-N-(thiophen-3-ylmethylene) aniline; L7: (E)-4-chloro-2-nitro-N-(pyridin-3-ylmethylene) aniline. Analytical and spectroscopic methods, such as molar conductance measurement, UV–Vis, IR, NMR, and DFT studies, have been used to describe newly synthesised compounds. The DFT studies have also provided confirmation regarding the complexes' geometry. The results of the Tauc equation indicate that the fundamental band gap of the compound [Bu2Sn(L5)2Cl2] is 2.670 eV, which is in agreement with the findings of DFT studies, which indicate that the band gap is 2.657 eV. The bactericidal effects of Schiff bases and their dibutyltin(IV) complexes were tested. The antibacterial activity of organotin(IV) complexes is enhanced in comparison to that of the free ligands.  相似文献   

11.
Stable ruthenium(II) complexes of Schiff bases have been prepared by reacting [RuHCl(CO)(PPh3)2(B)] (B = PPh3, pyridine or piperidine) with bis(o-vanillin)ethylenediimine (valen), bis(o-vanillin)propylene-diimine (valpn), bis(o-vanillin)tetramethylenediimine (valtn), bis(o-vanillin)o-phenylenediimine (valphn), bis(salicylaldehyde)tetramethylenediimine (saltn) and bis(salicylaldehyde)o-phenylenediimine (salphn). These complexes have been characterised by elemental analyses, i.r., electronic, 1H- and 31P{1H}-n.m.r. spectral studies. In all the above reactions, the Schiff bases replace two molecules of Ph3P, a hydride and a halide ion from the starting complexes, indicating that the Ru–N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru–P bond to Ph3P. The new complexes of the general formula [Ru(CO)(B)(L)] (B = PPh3, py or pip; L = tetradentate Schiff bases) have been assigned an octahedral structure. Some of the Schiff bases and the new complexes have been tested against the pathogenic fungus Fusarium sp.  相似文献   

12.
Two novel Schiff bases, 4,4′-methylenedianilidene-bis(3-methoxy-4-hydroxy-benzaldehyde) (L1) and 4,4′-methylenedianilidene-bis(3,4-dimethoxybenzaldehyde) (L2), have been prepared by condensing 4,4′-methylenedianiline (MDA) with vanillin and 3,4-dimethoxybenzaldehyde (DMB) respectively in ethanolic medium. Metal complexes of the above Schiff bases are prepared from salts of Cu(II), Zn(II), Co(II) and VO(IV). They are characterized by elemental analysis, molar conductivity, magnetic moment measurements, IR, 1H NMR, UV-Vis., FAB Mass, and EPR spectra. The elemental analysis data exhibit the formation of 1: 1 [M: L] ratio. The mode of bonding and the geometry of the complexes have been confirmed on the basis of IR, UV-Vis. and magnetic moment measurements. These data reveal a square-planar geometry for all the complexes except VO(IV) which has square-pyramidal geometry. The molar conductance measurements of the Schiff base complexes reveal the existence of non-electrolytic nature. The interactions of complexes with calf thymus DNA (CT-DNA) have been investigated by electronic absorption spectroscopy, viscosity measurements and cyclic voltammetry. The results indicate that the complex can bind to DNA by intercalation modes. The Schiff bases and their metal complexes have been evaluated for their antifungal and antibacterial activities against different species of pathogenic fungi and bacteria and their results are compared with standard drugs.  相似文献   

13.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

14.
The oxovanadium(IV) complexes of the Schiff bases derived from 1,3-diamino-propane-2-ol and salicylaldehyde, 3-aldehydosalicylic acid, 5-chloro-salicylaldehyde, acetyl acetone, and also of the Schiff base derived from 1.3-diaminopropane and salicylaldehyde have been isolated in the pure state and characterized. The structure of these complexes is discussed on the basis of elemental analyses, electronic spectra and magnetic moment values. These complexes are characterized as five co-ordinate compounds having the general formula [VO](L), where, LH2 = a molecule of dibasic, tetradentate Schiff base. Electronic spectra of the complexes are found to be solvent independent. The compounds are paramagnetic (μeff. = 1.76–1.79 B. M.), and are very stable in air.  相似文献   

15.
Binuclear ruthenium(III) complexes containing a binucleating Schiff base ligand, L and Ph3P or Ph3As, [RuX2(EPh3)2]2L (X = Cl or Br; E = P or As) have been prepared by reacting [RuCl3(PPh3)3], [RuCl3(AsPh3)3], [RuBr3(AsPh3)3] and [RuBr3(PPh3)2(MeOH)] with Schiff bases in a 2:1 molar ratio. The Schiff bases used in this study were prepared by condensing the appropriate diamine with salicylaldehyde or benzoylacetone in a 1:2 molar ratio respectively. The complexes were characterised by analytical, spectral (i.r., electronic, e.p.r.) and electrochemical data. An octahedral structure has been proposed for all the new ligand-bridged binuclear RuIII complexes. The new complexes have been used as catalysts in aryl–aryl couplings and also subjected to antifungal activity studies.  相似文献   

16.
Summary Coordinative interaction between tellurium tetrachloride or aryltellurium trichloride and transition metal chelates of tetradentate Schiff bases has yielded bimetallic molecular adducts of the general formula RnTeCl4–n · ML [n = 0 or 1, R = Ph,p-MeOC6H4 orp-EtOC6H4, M = nickel(II) or copper(II) and L2– dianion of the Schiff bases derived from salicylaldehyde oro-hydroxyacetophenone and ethylenediamine]. The i.r. spectral and magnetic measurements on the complexes in the solid state indicate coordination of the metal chelates to tellurium(IV)via two phenolic oxygens. Planarity about the transition metal ion is thus retained.  相似文献   

17.
Dibasic tridentate Schiff bases obtained by the condensation of O -aminobenzoic acid with salicyldehyde and its 5-chloro and 5-bromo derivatives were synthesised and used to pracipitate Zr(IV), Th(IV) and UO2(VI) metals as complexes. The 1: 1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility measurements by Gouy method show, these complexes to be monormeic and diamagnetic. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type Zr(OH)3L.H2O2 Th(OH)2 L.H2O and UO2L.H2O are formed having solvent molecule in co-ordination with metal ion.  相似文献   

18.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

19.
Summary Hafnium(IV) complexes have been prepared by the reactions of hafnium(IV) isopropoxide isopropanol with Schiff bases [bis(salicylaldehyde)hydrazine] (Sal-AH2), (bis(o-hydroxyacetophenone)hydrazine] (Acp-AH2), [bis(resacetophenone)hydrazine] (Res-AH2), [bis(salicylaldehyde)ethylenediimine) (SaleneH2), [bis(o-hydroxyacetophenone)ethylenediimine] (AcpeneH2) and [bis(salicylaldehyde)o-phenylenediimine] (SalpheneH2) (derived from salicylaldehyde,o-hydroxyacetophenone, resacetophenone and diamines) in appropriate molar ratios using benzene as solvent. The complexes [Hf(OPr-i)2(SB)] and [Hf(SB)2] (where SB2– represents the dianion of the Schiff base) are reported. The complexes of Sal-A, Acp-A and Res-A are 5-and 6-coordinate while those of salene, acpene and salphene are 6-and 8-coordinate. The Schiff bases draw on Sal-A, Acp-A and Res-A are tridentate and salene, acpene and salphene are tetradentate. The mode of bonding through nitrogen and oxygen and the stereochemistry of the complexes are discussed in relation to the elemental analyses and spectra (electronic, infrared and nuclear magnetic resonance).  相似文献   

20.
Diorganotin(IV) complexes, [SnR2L] (1)-(4), (R = Me, Ph), of the terdentate Schiff bases N-[(2-pyrroyl)methylidene]-N′-tosylbenzene-1,2-diamine (H2L1) and N-[(2-hydroxyphenyl)metylidene]-N′-tosylbenzene-1,2-diamine (H2L2) have been synthesised. The complexes were obtained by addition of the appropriate ligand to a methanol suspension of the corresponding diorganotin(IV) dichloride in the presence of triethylamine. However, the reaction between the precursor [η5-C5H5Fe(CO)2]2SnCl2 and the Schiff bases in the presence of triethylamine gave (5) and (6), respectively. The crystal structures of the ligands and complexes have been studied by X-ray diffraction. The structure of [SnR2L] complexes shows the tin to be five-coordinate in a distorted square pyramidal environment with the dianionic ligand acting in a terdentate manner. In 5 and 6, the iron atom is in a slightly distorted octahedral environment and is meridionally coordinated by two ligands. Spectroscopic data for the ligands and complexes (IR, 1H, 13C and 119Sn NMR and mass spectra) are discussed and related to the structural information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号