首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study nonlinear transport for two coupled one-dimensional quantum wires or carbon nanotubes described by Luttinger liquid theory. Transport properties are shown to crucially depend on the contact length L c. For a special interaction strength, the problem can be solved analytically for arbitrary L c. For point-like contacts and strong interactions, a qualitatively different picture compared to a Fermi liquid emerges, characterized by zero-bias anomalies and strong dependence on the applied cross voltage. In addition, pronounced Coulomb drag phenomena are important for extended contacts. Received 28 July 2000  相似文献   

2.
We present an extension of the Tomonaga-Luttinger model in which left and right-moving particles have different Fermi velocities. We derive expressions for one-particle Green's functions, momentum-distributions, density of states, charge compressibility and conductivity as functions of both the velocity difference ε and the strength of the interaction β. This allows us to identify a novel restricted region in the parameter space in which the system keeps the main features of a Luttinger liquid but with an unusual behavior of the density of states and the static charge compressibility κ. In particular κ diverges on the boundary of the restricted region, indicating the occurrence of a phase transition. Received 20 May 2002 / Received in final form 23 August 2002 Published online 19 November 2002  相似文献   

3.
An investigation of the different contributions leading to charge localization in a 1/2 or 1/4 filled band 1D conductor has been conducted through a study of transport properties in the solid solution [(TMTSF)1-x (TMTTF) x]2ReO4. The existence of an ordering transition of the anions allows to identify two contributions to the electronic potential with wave vector 4kF. A dominant on-site 4kF potential besides the bond contribution is revealed when Umklapp scattering is pertinent via the weakening of the localization arising at the (0, 1/2, 1/2) anion ordering which is stabilized under pressure in the compound [(TMTSF) 0.5 (TMTTF)0.5]2ReO4 at variance with the enhancement of localization observed in the homomolecular (TMTTF)2ReO 4 material. Received: 13 May 1998 / Revised: 8 July 1998 / Accepted: 9 July 1998  相似文献   

4.
We present a new finite-temperature quantum Monte Carlo algorithm to compute imaginary-time Green functions for a single hole in the t-J model on non-frustrated lattices. Spectral functions are obtained with the Maximum Entropy method. Simulations of the one-dimensional case show that a simple charge-spin separation Ansatz is able to describe the overall features of the spectral function such as the bandwidth and the compact support of the spectral function, over the whole energy range for values of J / t from 1/3 to 4. This is contrasted with the two-dimensional case. The quasiparticle weight Zk is computed on lattices up to L =128 sites in one dimension, and scales as . Received 15 February 2000  相似文献   

5.
Standard bosonization techniques lead to phonon-like excitations in a Luttinger liquid (LL), reflecting the absence of Landau quasiparticles in these systems. Yet in addition to the above excitations some LL are known to possess solitonic states carrying fractional quantum numbers (e.g. the spin 1/2 Heisenberg chain). We have reconsidered the zero modes in the low-energy spectrum of the Gaussian boson LL Hamiltonian both for fermionic and bosonic LL: in the spinless case we find that two elementary excitations carrying fractional quantum numbers allow to generate all the charge and current excited states of the LL. We explicitly compute the wavefunctions of these two objects and show that one of them can be identified with the 1D version of the Laughlin quasiparticle introduced in the context of the Fractional Quantum Hall effect. For bosons, the other quasiparticle corresponds to a spinon excitation. The eigenfunctions of Wen's chiral LL Hamiltonian are also derived: they are quite simply the one dimensional restrictions of the 2D bulk Laughlin wavefunctions. Received 26 January 1999 and Received in final form 21 April 1999  相似文献   

6.
We consider one-dimensional (1D) interacting spinless fermions with a non-linear spectrum in a clean quantum wire (non-linear bosonization). We compute diagrammatically the 1D dynamical structure factor, S(ω,q), beyond the Tomonaga approximation focusing on it's tails, |ω| ≫vq, i.e. the 2-pair excitation continuum due to forward scattering. Our methodology reveals three classes of diagrams: two “chiral” classes which bring divergent contributions in the limits ω→±vq, i.e. near the single-pair excitation continuum, and a “mixed” class (so-called Aslamasov-Larkin or Altshuler-Shklovskii type diagrams) which is crucial for the f-sum rule to be satisfied. We relate our approach to the T=0 ones present in the literature. We also consider the case and show that the 2-pair excitation continuum dominates the single-pair one in the range: |q|T/kF ≪ω±vq ≪T (substantial for q ≪kF). As applications we first derive the small-momentum optical conductivity due to forward scattering: σ∼1/ω for T ≪ω and σ∼T/ω2 for T ≫ω. Next, within the 2-pair excitation continuum, we show that the attenuation rate of a coherent mode of dispersion Ωq crosses over from , e.g. γq ∼|q|3 for an acoustic mode, to , independent of Ωq, as temperature increases. Finally, we show that the 2-pair excitation continuum yields subleading curvature corrections to the electron-electron scattering rate: , where V is the dimensionless strength of the interaction.  相似文献   

7.
We present a study of the one-particle spectral properties for a variety of models of Luttinger liquids with open boundaries. We first consider the Tomonaga-Luttinger model using bosonization. For weak interactions the boundary exponent of the power-law suppression of the spectral weight close to the chemical potential is dominated by a term linear in the interaction. This motivates us to study the spectral properties also within the Hartree-Fock approximation. It already gives power-law behavior and qualitative agreement with the exact spectral function. For the lattice model of spinless fermions and the Hubbard model we present numerically exact results obtained using the density-matrix renormalization-group algorithm. We show that many aspects of the behavior of the spectral function close to the boundary can again be understood within the Hartree-Fock approximation. For the repulsive Hubbard model with interaction U the spectral weight is enhanced in a large energy range around the chemical potential. At smaller energies a power-law suppression, as predicted by bosonization, sets in. We present an analytical discussion of the crossover and show that for small U it occurs at energies exponentially (in -1/U) close to the chemical potential, i.e. that bosonization only holds on exponentially small energy scales. We show that such a crossover can also be found in other models. Received 8 February 2000 and Received in final form 25 April 2000  相似文献   

8.
We present a low energy-theory for non-linear transport in finite-size interacting single-wall carbon nanotubes. It is based on a microscopic model for the interacting pz electrons and successive bosonization. We consider weak coupling to the leads and derive equations of motion for the reduced density matrix. We focus on the case of large-diameter nanotubes where exchange effects can be neglected. In this situation the energy spectrum is highly degenerate. Due to the multiple degeneracy, diagonal as well as off-diagonal (coherences) elements of the density matrix contribute to the nonlinear transport. At low bias, a four-electron periodicity with a characteristic ratio between adjacent peaks is predicted. Our results are in quantitative agreement with recent experiments.  相似文献   

9.
We calculate the damping γq of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k2 / 2 m at zero temperature. Using standard many-body perturbation theory, we obtain γq from the expansion of the inverse irreducible polarization to first order in the effective screened (RPA) interaction. For wave-vectors | q| /kF ≪F (where kF = m vF is the Fermi wave-vector) we find to leading order γq ∝| q |3 /(vF m2). On the other hand, for F ≪| q| /kF most of the spectral weight is carried by the particle-hole continuum, which is distributed over a frequency interval of the order of q2/m. We also show that zero sound damping leads to a finite maximum proportional to |k - kF | -2 + 2 η of the charge peak in the single-particle spectral function, where η is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze K0.3MoO3. We comment on other recent calculations of γq.  相似文献   

10.
We review and extend the composite fermion theory for semiconductor quantum dots in high magnetic fields. The mean-field model of composite fermions is unsatisfactory for the qualitative physics at high angular momenta. Extensive numerical calculations demonstrate that the microscopic CF theory, which incorporates interactions between composite fermions, provides an excellent qualitative and quantitative account of the quantum dot ground state down to the largest angular momenta studied, and allows systematic improvements by inclusion of mixing between composite fermion Landau levels (called Λ levels).  相似文献   

11.
We report a microwave study of the longitudinal and transverse transport properties of the quasi-one-dimensional organic conductor (TMTSF)2PF6 in its normal phase. The contactless technique have provided a direct measurement of the temperature profile of the resistivity along the b' direction and in magnetic fields up to 14 T. A characteristic energy scale ( K) has been observed which delimits a transient regime from an insulating to a metallic behavior. This anomalous profile is discussed in terms of the onset of coherent transport properties along the b' direction below 40 K. This is also supported by the observation of a finite longitudinal and transverse magnetoresistances only below 40 K, indicative of a two-dimensional regime. Below Tx, however, strong deviations with respect to a Fermi liquid behavior are evidenced. Received 27 January 1999  相似文献   

12.
13.
The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reveals that the Luttinger liquid spin susceptibility approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given. Received 2 March 1999  相似文献   

14.
We study the interplay of Anderson localization and interaction in a two chain Hubbard ladder allowing for arbitrary ratio of disorder strength to interchain coupling. We obtain three different types of spin gapped localized phases depending on the strength of disorder: a pinned 4k F Charge Density Wave (CDW) for weak disorder, a pinned 2k F CDWπ for intermediate disorder and two independently pinned single chain 2k F CDW for strong disorder. Confinement of electrons can be obtained as a result of strong disorder or strong attraction. We give the full phase diagram as a function of disorder, interaction strength and interchain hopping. We also study the influence of interchain hopping on localization length and show that localization is enhanced by a small interchain hopping but suppressed by a large interchain hopping. Received 6 April 2001  相似文献   

15.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

16.
A scattering approach for correlated one-dimensional systems is developed. The perfect contact to charge reservoirs is encoded in time-dependent boundary conditions. The conductance matrix for an arbitrary gated wire, respecting charge conservation, is expressed through a dynamic scattering matrix. Two applications are developed. First, it is shown that the dc conductance is equal to e 2/h for any model with conserved total left- and right-moving charges. Second, the ac conductance matrix is explicitly computated for the Tomonaga-Luttinger model (TLL). Received 31 August 1998  相似文献   

17.
We reconsider the theory of the half-filled lowest Landau level using the Chern-Simons formulation and study the grand-canonical potential in the random-phase approximation (RPA). Calculating the unperturbed response functions for current- and charge-density exactly, without any expansion with respect to frequency or wave vector, we find that the integral for the ground-state energy converges rapidly (algebraically) at large wave vectors k, but exhibits a logarithmic divergence at small k. This divergence originates in the k-2 singularity of the Chern-Simons interaction and it is already present in lowest-order perturbation theory. A similar divergence appears in the chemical potential. Beyond the RPA, we identify diagrams for the grand-canonical potential (ladder-type, maximally crossed, or a combination of both) which diverge with powers of the logarithm. We expand our result for the RPA ground-state energy in the strength of the Coulomb interaction. The linear term is finite and its value compares well with numerical simulations of interacting electrons in the lowest Landau level. Received: 19 February 1998 / Revised: 25 March 1998 / Accepted: 17 April 1998  相似文献   

18.
The experimentally observed filling factors of the fractional quantum Hall effect can be described in terms of the composite fermion wave function of the Jastrow-Slater form [0pt] fully projected into the lowest Landau level. The Slater determinant of the above composite fermion wave function represents the filled Landau levels of composite fermions evaluated at the corresponding reduced magnetic field. For a system of fermions studied in the thermodynamic limit, we prove that in the even-denominator-filled state limit (when the number of filled Landau levels of composite fermions becomes infinite), the above composite fermion wave function exactly transforms into the Rezayi-Read Fermi-sea-like wave function [0pt] constructed by attaching 2m flux quanta to the Slater determinant of two-dimensional free fermions at the density corresponding to that filling. We study the composite fermion wave function and its evolution into the Fermi-sea-like wave function for a range of filling factors very close to the even-denominator-filled state. Received 19 March 1999  相似文献   

19.
20.
Optical experiments are reported for the metallic state of the linear chain compound (TMTSF)2ClO4. For the electric field polarized both along the highly (a) and intermediately (b ) conducting directions, a zero energy (ZE) mode and a finite energy mode (FE) are observed. The large anisotropy in the spectral weight of the FE mode is consistent with the band structure, however the spectral weight of the ZE mode is surprisingly isotropic. In the least conducting (c *) direction, the low frequency optical conductivity along with the dc conductivity indicate the presence of a (small) Drude component only at temperatures below 10 K. These observations provide evidence for a correlation induced semimetallic state, with a 3D to 2D crossover with increasing temperature. Received 20 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号