首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of N2O, CO, and NO in excess H2 were photolyzed at 213.9 nm and 298°K. The initially formed O(1D) atoms from the photolysis of N2O abstract an H atom from H2 permitting a study of the competition: From the CO2 yield the relative rate coefficient k1/k2 is obtained. It is found to be slightly dependent on pressure for total pressures (mainly H2) of 95.5 to 768 torr. However, the values are near the high-pressure limiting value which is found by extrapolation to give k1 = 1.2 × 10?11 cm3/sec based on k2 = 3.55 × 10?13 cm3/sec.  相似文献   

2.
N2O was photolyzed at 2139 Å to produce O(1D) atoms in the presence of H2O and CO. The O(1D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative importance of the various possible O(1D )–H2O reactions is The relative rate constant for O(1D) removal by H2O compared to that by N2O is 2.1, in good agreement with that found earlier in our laboratory. In the presence Of C3H6, the OH can be removed by reaction with either CO or C3H6: From the CO2 yield, k3/k2 = 75,0 at 100°C and 55.0 at 200°C to within ± 10%. When these values are combined with the value of k2 = 7.0 × 10?13exp (–1100/RT) cm3/sec, k3 = 1.36 × 10?11 exp (–100/RT) cm3/sec. At 25°C, k3 extrapolates to 1.1 × 10?11 cm3/sec.  相似文献   

3.
n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

4.
The dissociation of N2O/Ar mixtures, with and withoutadded CO, has been studied by monitoring both infrared and ultraviolet emissions behind reflected shock waves. Initial temperatures ranged from 1850 to 2535°K, and the total concentrations were 1.94–2.40 × 1018 molecule/cm3. The infrared emission, corrected if necessary for CO, was observed to decay exponentially, and an apparent rate constant Kapp was obtained. Addition of CO had no effect upon kapp and all the data can be described by the followingArrhenius parameters (in units of cm3/molecule.sec): log A=?9.31±0.12 and EA=219.1±5.2 kJ/mole. Ultraviolet emission data, in runs with added CO, indicate that the atomic oxygen concentration reached a constant value at t < 600 μsec for T0 > 2050°K. Numerical integration of the mechanism allowed comparison of calculated and observed parameters relating to both infrared and ultraviolet data. A consistent fit to these data was obtained with k1=1.3×10?9 exp (?238 kJ/RT) and k2=k3=1.91×10?11 exp(?105 kJ/RT). The concentration of atomic oxygen produced by N2O dissociation is shown to be a sensitive function of k1 through k3. Upper limits are also set for the rate constants of the following reactions:   相似文献   

5.
The rate of decomposition of methyl nitrite (MN) has been studied in the presence of isobutane-t-BuH-(167-200°C) and NO (170-200°C). In the presence of t-BuH (~0.9 atm), for low concentrations of MN (~10?4M) and small extents of reaction (4-10%), the first-order homogeneous rates of methanol (MeOH) formation are a direct measure of reaction (1) since k4(t-BuH) »k2(NO): . The results indicate that the termination process involves only \documentclass{article}\pagestyle{empty}\begin{document}$ t - {\rm Bu\, and\, NO:\,\,}t - {\rm Bu} + {\rm NO\stackrel{e}{\longrightarrow}} $\end{document} products, such that ke ~ 1010 M?1 ~ sec?1.Under these conditions small amounts of CH2O are formed (3-8% of the MeOH). This is attributed to a molecular elimination of HNO from MN. The rate of MeOH formation shows a marked pressure dependence at low pressures of t-BuH. Addition of large amounts of NO completely suppresses MeOH formation. The rate constant for reaction (1) is given by k1 = 1015.8°0.6-41.2°1/· sec?1. Since (E1 + RT) and ΔHΔ1 are identical, within experimental error, both may be equated with D(MeO - NO) = 41.8 + 1 kcal/mole and E2 = 0 ± 1 kcal/mol. From ΔS11 and A1, k2 is calculated to be 1010.1°0.6M?1 · sec?1, in good agreement with our values for other alkyl nitrites. These results reestablish NO as a good radical trap for the study of the reactions of alkoxyl radicals in particular. From an independent observation that k6/k2 = 0.17 independent of temperature, we conclude that \documentclass{article}\pagestyle{empty}\begin{document}$ E_6 = 0 \pm 1{\rm kcal}/{\rm mol\, and\,}\,k_6 = 10^{9.3} M^{- 1} \cdot {\rm sec}^{- 1} :{\rm MeO} + {\rm NO}\stackrel{6}{\longrightarrow}{\rm CH}_2 {\rm O} + {\rm HNO} $\end{document}. From the independent observations that k2:k2→: k6→ was 1:0.37:0.04, we find that k2→ = 109.7M?1 ? sec?1 and k6→ = 108.7M?1 ? sec?1. In addition, the thermodynamics lead to the result In the presence of NO (~0.9 atm) the products are CH2O and N2O (and presumably H2O) such that the ratio N2O/CH2O ~ 0.5. The rate of CH2O formation was affected by the surface-to-volume ratio s/v for different reaction vessels, but it is concluded that, in a spherical reaction vessel, the CH2O arises as the result of an essentially homogeneous first-order, fourcenter elimination of \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm HNO}:{\rm MN\stackrel{5}{\longrightarrow}CH}_{\rm 2} {\rm O} + {\rm HNO} $\end{document}. The rate of CH2O formation is given by k5 = 1013.6°0.6-38.5-1/? sec?1.  相似文献   

6.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

7.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

8.
i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

9.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

10.
C2H5ONO was photolyzed with 366 nm radiation at ?48, ?22, ?2.5, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of CH3CHO, Φ{CH3CHO}, was measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1a = 0.29 ± 0.03 independent of temperature. The C2H5O radicals can react with NO by two routes The C2H5O radical can also react with O2 via Values of k6/k2 were determined at each temperature. They fit the Arrhenius expression: Log(k6/k2) = ?2.17 ± 0.14 ? (924 ± 94)/2.303 T. For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (3.0 ± 1.0) × 10?13 exp{?(924 ± 94)/T} cm3/s. The reaction scheme also provides k8a/k8 = 0.43 ± 0.13, where   相似文献   

11.
We have investigated the kinetics for the reaction CH3O? + NO2 in N2 bath gas. The rate constants are well‐fit by the Troe expression over the temperature (250–335 K) and pressure range (30–700 Torr) investigated. The termolecular rate constant is given by cm6 molecule?2 s?1, and the rate constant at the high‐pressure limit is given by cm3 molecule?1 s?1. We also studied the kinetics of the reaction of CD3O? + NO2 as a function of temperature and pressure under similar conditions as those for CH3O? + NO2. The resulting low‐ and high‐pressure limiting rate constants are cm6 molecule?2 s?1 and cm3 molecule?1 s?1, respectively. The rate constants for the two isotopologues track each other closely as the high‐pressure limit is approached. The present results agree with most previous results at 295 K over a range of pressures, but there is substantial disagreement about the temperature dependence.  相似文献   

12.
Pulsed laser photolysis of O3 in a large excess of N2 has been used to generate O(3P) atoms in the presence of OCS. By observing chemiluminescence from the small fraction of electronically excited SO2 formed in the reaction of SO with O3, rate constants of (1.7 ± 0.2) × 10?14 and (8.7 ± 1.6) × 10?14 cm3/molecule sec have been determined at 296 ± 4 K for the reactions and In addition, it has been shown that any reaction between SO and OCS has a rate constant 10?14 cm3/molecule sec.  相似文献   

13.
The electrical conductivity process in a new class of ion-containing polymers—highly concentrated solid solutions of hydrated perchlorate salts in polyacrylonitrile (PAN)—is described (σdc = 10?7?10?2Ω?1cm?1). A low-ac instrument (70 cps) is used to measure electrical conductivity. We present a cryogenic system in which the temperature dependence of the conductivity is studied (78–340°K). The ionic character of the conductivity process is established. The conductivity both above and below the glass-transition (Tg) point is thermally activated with an activation energy of 0.7–0.9 e V for the glassy state (?g) and 0.12–0.6 eV for the rubber-like state (?r). The systems described exhibit a compensation effect between the pre-exponential factor for the conductivity in the glassy state σ0g and the difference in activation energy ?g – ?r   相似文献   

14.
Flash photolysis of NO coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction O + NO + N2 → NO2 + N2 at temperatures from 217 to 500 K. The measured rate constants obey the Arrhenius equation k = (15.5 ± 2.0) × 10?33 exp(1160 ± 70)/1.987 T] cm6 molecule?2 s?1. An equally acceptable equation describing the temperature dependence of k is k = 3.80 × 10?27/T1.82 cm6 molecule?2 s?1. These results are discussed and compared with previous work.  相似文献   

15.
The kinetics of iodine dioxide (OIO) reactions with nitric oxide (NO), nitrogen dioxide (NO2), and molecular chlorine (Cl2) are studied in the gas‐phase by cavity ring‐down spectroscopy. The absorption spectrum of OIO is monitored after the laser photodissociation, 266 or 355 nm, of the gaseous mixture, CH2I2/O2/N2, which generates OIO through a series of reactions. The second‐order rate constant of the reaction OIO + NO is determined to be (4.8 ± 0.9) × 10?12 cm3 molecule?1 s?1 under 30 Torr of N2 diluent at 298 K. We have also measured upper limits for the second‐order rate constants of OIO with NO2 and Cl2 to be k < 6 × 10?14 cm3 molecule?1 s?1 and k < 8 × 10?13 cm3 molecule?1 s?1, respectively. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 688–693, 2007  相似文献   

16.
The kinetics of oxidation of [CrIIIcdta(H2O)]? and [CrIIIdtpa(H2O)]2? (where cdta = trans‐1,2‐diaminocyclohexane‐N,N,N′,N′‐tetraacetate and dtpa = diethylenetriaminepentaacetate) by periodate ion has been studied in aqueous solutions. The oxidation of these complexes was carried out in the pH range 5.52–7.44 for the [CrIIIcdta(H2O)]? complex and the pH range 5.56–8.56 for the [CrIIIdtpa(H2O)]2? complex. The reaction exhibited an uncommon second‐order dependence on [CrIIIL(H2O)]n (L = cdta or dtpa and n=?1 or ?2, respectively) and a first‐order dependence on [IO?4]. At fixed reaction conditions, the reaction rate is described by Eq. (i). The third‐order rate constant, k3, varied with [H+] according to Eq. (ii). (i) (ii) A mechanism in which simultaneous one‐electron transfer from two [CrIIIL(OH)]n?1 ions to I(VII) is proposed. The two [CrIIIL(OH)]n?1 ions are bridged to I(VII) via the hydroxo group. Periodate ion is known to undergo rapid substitution or expansion of its coordination number from four to six. The activation parameters ΔH* and ΔS* were calculated using the Eyring equation. The relatively high negative values of ΔS* are consistent with an associative process preceding electron transfer. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 729–735, 2012  相似文献   

17.
The reaction of O(3P), prepared from the Hg photosensitization of N2O, with C2HCl3 was studied at 25°C. The products of the reaction in the absence of O2 were CO, CHCl3, and polymer (as well as N2 from the N2O). The quantum yields of CO and CHCl3 were 0.23 ± 0.01 and 0.14 ± 0.05, is respectively independent of reaction conditions. The reaction mechanism is with k14a/k14 = 0.23, where k14a + k14b. Most of the HCl and CCl2 combine to form CHCl3, but some other products must also be formed to account for the difference in the CO and CHCl3 quantum yields. The C2HCl3O* adduct polymerizes without involving additional C2HCl3 molecules, since the quantum yield of C2HCl3 disappearance, ? Φ{C2HCl3}, was about 1.0 at high values of [N2O]/[C2HCl3]. The rate coefficient for the reaction of O(3P) with C2HCl3 is 0.10 that for the reaction of O(3P) with C2F4. In the presence of O2 the free radical chain oxidation occurs because of the reaction The main product is CHCl2CCl(O) with smaller amounts of CO and CCl2O, and some CO2. The chain lengths were long and values of ? Φ {C2HCl3} up to 90 were observed.  相似文献   

18.
N2O decay has been monitored via infrared emission for a series of mixtures containing N2O/Ar and N2O/H2/Ar. These mixtures were studied behind reflected shock waves in the temperature interval of 1950–3075°K with total concentrations ranging from 1.2 to 2.5 × 1018 molec/cm3. In all cases the N2O decayed exponentially, and a rate constant kobs was obtained. Runs without added H2 could be described by the following Arrhenius parameters: log A = ?9.72 ± 0.08 (in units of cm3/molec · sec) and EA = 203.5 ± 3.6 kJ/mole. Addition of 0.01% and 0.1% H2 was observed to increase the decay rate; the largest increase occurred between 2250 and 2500°K with 0.1% H2, where kobs doubled. Mixtures with no added H2 were analyzed by numerical integration of the following reactions: Quantitative agreement between calculations and observations were obtained with both high and low choices for k2 and k3. The additional reactions were included in the analysis of the mixtures containing H2. Here agreement was obtained only when low values were assigned to k2 and k3. The combinations of k1k3 which agreed with all the data were k1 = 3.25 × 10?10 exp (?215 kJ/RT) and k2 = k3 = 1.91 × 10?11 exp (-105 kJ/RT).  相似文献   

19.
Heterogeneous recombination of O + CO → CO2 over a solid CO2 surface at 77 K was investigated. A modified discharge flow setup was used to generate low O atom concentrations by the reaction N + NO → N2 + O(3P). The O atom concentrations were measured upstream and downstream of the solid CO2 substrate using resonance fluorescence by monitoring the unresolved 130.3 nm triplet transition 3S1 ? 3P2,1,0 at the two fixed points. CO2 formed was determined by measuring the β activity from C14O2 produced from CO containing C14O as a reactant gas. The CO2 formation was found to be first order in CO and independent of O atom concentration over the entire range of 4.3 × 1012 to 1.9 × 1014 cm?3 and 1.2 × 1011 to 5.6 × 1012 cm?3 for CO and O respectively. The first order recombination coefficient, λCO was found to be 1.4 (±.38) × 10?5.  相似文献   

20.
A rarely occurring type of hindered rotation was observed by 1H NMR in some N?(2,2,2?trichlorocarboethoxy)nortropanes. A complete lineshape analysis gave the activation energy Ea = 56.9 kJ mol?1 for the rotation around the CH2O? CO bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号