共查询到20条相似文献,搜索用时 15 毫秒
1.
视频跟踪中,使用单一特征对目标进行描述难以适应复杂场景的变化,目标的尺度变化、形变、遮挡等因素易导致跟踪失败。为提高跟踪的稳健性,基于核循环结构,提出一种自适应特征融合和模型更新的跟踪方法,并引入尺度更新机制。首先利用目标的灰度特征和局部二值模式特征分别计算滤波响应图,依据响应图的峰值旁瓣比(PSR)自适应地分配权值并加权融合,从而估计目标的最佳位置。然后根据融合后响应图的PSR来判断跟踪质量,据此决定是否更新模型。最后在目标位置周围提取方向梯度直方图特征构建尺度金字塔,训练尺度相关滤波器,用来估计目标的最佳尺度。实验选取标准测试数据集中具有光照变化,遮挡和尺度变化的视频序列进行实验,结果表明,该算法能够实现对目标的稳定跟踪,并且在距离精度和成功率上均优于对比算法。 相似文献
2.
为了提高复杂场景中目标跟踪的稳健性,解决由光照变化、目标形变、尺度变化和遮挡等导致的目标跟踪失败问题,提出一种自适应特征融合的多尺度核相关滤波目标跟踪算法。该算法首先通过2种不同的特征分别训练2个核相关滤波器,利用这2个滤波器响应的峰值旁瓣比和相邻两帧的响应一致性获得融合权重,同时采用自适应加权的融合策略将这2个滤波器的响应结果进行融合,完成目标的位置估计;然后以此为中心进行多尺度采样,构建尺度金字塔,并通过贝叶斯估计的方法确定目标的最优尺度;最后依据目标跟踪的置信度进行跟踪模型更新,以避免模型退化。选取51组视频序列进行测试,并与近年来性能优异的目标跟踪算法进行对比。实验结果表明,所提算法能有效降低光照变化、目标形变、尺度变化和遮挡等因素影响,对测试视频序列取得了较高的跟踪精度和成功率,整体性能优于对比算法。 相似文献
3.
针对在复杂环境中目标尺度变化、形状变化以及场景光照变化、背景干扰等因素导致的目标跟踪稳定性下降问题,提出一种基于自适应多层卷积特征决策融合的目标跟踪算法。首先,通过卷积神经网络VGG-Net-19提取目标候选区域的多层卷积特征;其次,在相关滤波模型框架下,利用这些卷积特征构建多个弱跟踪器;接着,根据每个弱跟踪器的决策损失变化自适应地调节它们的决策权重,完成基于多层卷积特征的目标位置估计;然后,根据尺度相关滤波模型在目标中心区域进行多尺度采样,并利用相邻帧的尺度变化先验分布完成对目标尺度的预测。选取51组具有多种挑战因素的视频序列对所提算法的跟踪性能进行测试。实验结果表明,与当前主流的目标跟踪算法相比,所提算法取得了更高的跟踪精度和成功率,同时可以较好地适应目标的尺度变化,并且在目标发生形变、场景出现光照变化及背景干扰等复杂条件下仍具有较好的跟踪鲁棒性。 相似文献
4.
《光学学报》2017,(5)
针对复杂场景下单一颜色特征稳健性差、存在类目标干扰及目标尺度变化的问题,提出了一种基于特征融合和尺度自适应的干扰感知目标跟踪方法。首先,综合目标、邻域背景、类似干扰区域的三原色(RGB)特征和改进的方向梯度直方图(HOG)特征计算得到干扰感知目标模型;在搜索区域内逐像素点计算目标概率图,然后进行密集采样得到候选目标,利用目标概率图的概率值与距离值进行加权,同时定位目标和类似干扰,并更新目标模型;采用RGB直方图建立尺度模型,从当前帧图像上截取不同尺度的图像块并计算其RGB直方图,通过与尺度模型比较,获得最优尺度估计并更新尺度模型。实验结果表明,提出的方法对复杂场景下的类目标干扰、局部遮挡、尺度变化等均具有很好的适应性,同时距离精度、重叠精度等指标优于对比算法。 相似文献
5.
6.
《光学学报》2017,(3)
针对空间正则化相关滤波(SRDCF)跟踪算法在目标跟踪中旋转变化、超出视野和严重遮挡情况下存在跟踪失败的问题,提出了一种基于自适应卷积特征的目标跟踪算法。对VGG-Net模型中conv3-4层卷积特征进行主成分分析,利用自适应降维技术将conv3-4层特征维数由256维降至130维。在检测区域求取分类器最大响应位置及其目标尺度信息,并对最大响应位置的目标进行置信度比较,训练在线支持向量机(SVM)分类器,以便在跟踪失败的情况下,重新检测到目标而实现长期跟踪。计算跟踪位置的峰旁比,选取可靠跟踪结果,更新模型。采用OTB-2015评估基准的100组视频序列进行测试,并与38种跟踪方法进行对比,验证了本文算法的有效性。实验结果表明:本文算法跟踪精度为0.804,成功率为0.607,排名第一,与SRDCF算法相比,两者分别提高了1.9%和1.5%。针对目标发生旋转变化、超出视野和严重遮挡等复杂情况,本文算法均具有较强的稳健性。 相似文献
7.
8.
9.
《光学学报》2018,(11)
针对长时目标跟踪中目标遮挡、目标出视野等因素导致的目标失跟问题,提出一种基于特征融合的长时目标跟踪算法,提高目标跟踪的速度和稳健性。首先,融合目标方向梯度直方图特征、颜色空间特征和局部敏感直方图特征,来增强算法在复杂情况下的特征判别力,提高目标跟踪的稳健性,并对融合特征进行降维来提高目标跟踪的速度;然后,通过额外的一维尺度相关滤波器来获得目标最优的尺度估计,并通过正交三角分解来无损降低计算复杂度;最后,自适应确定目标检测阈值,在目标遮挡或出视野导致目标失跟时,通过EdgeBoxes方法提取目标候选区域,利用结构化支持向量机重新检测目标位置达到长时跟踪的目的。在标准跟踪数据集OTB2015和UAV123上进行实验。结果表明,本文算法较对比算法中最优算法目标跟踪平均精度提升5.0%,目标跟踪平均成功率提升2.6%,目标跟踪平均速度为28.2 frame/s,可满足跟踪的实时性要求。在目标受到遮挡、出视野等情况下,该算法仍能够对目标进行持续准确的跟踪。 相似文献
10.
12.
针对视觉跟踪中目标尺度变化对准确跟踪的不利影响,提出一种基于核相关的尺度自适应视觉跟踪算法。首先,通过建立核岭回归模型构建二维核相关定位滤波器,采用融合后的多通道特征对滤波器进行训练,提高目标定位的精度;然后,对目标区域进行多尺度采样,样本缩放后提取其特征,并构造为一维特征,以此构建一维核相关尺度滤波器,估计出目标的最佳尺度。在OTB2013平台上的实验结果表明,与8种当前主流的跟踪算法相比,本文算法的跟踪精度和成功率均有优势。在尺度变化条件下,本文算法在快速准确跟踪的同时,较好地实现了对目标尺度的自适应跟踪。 相似文献
13.
为提高相关滤波(CF)跟踪算法的稳健性,并克服传统CF方法无法处理目标尺度变化以及未利用图像颜色特征等问题,提出了一种基于融合颜色特征的尺度自适应相关滤波改进跟踪算法。首先,将目标搜索区域从3原色(RGB)颜色空间转换到Lab颜色空间,提取搜索区域的Lab 3通道颜色特征;然后,融合Lab颜色特征与方向梯度直方图(HOG)特征得到多通道特征,利用核相关滤波(KCF)计算输出响应图并寻找图中最大响应位置即目标位置;最后,基于Lab颜色特征建立尺度模型,从当前帧的目标位置处截取不同尺度图像块,通过将其与尺度模型比较得到目标尺度最优估计。实验选取35段公开彩色视频序列进行测试,并将所提算法与其他5种跟踪性能较好的跟踪方法进行对比。实验结果表明,所提方法对彩色视频序列中的目标遮挡、变形、尺度变化等现象具有良好的适应性,其平均性能优于对比方法,同时具有76frame·s~(-1)的实时跟踪速度。 相似文献
14.
利用红外跟踪测量系统能够同时获取目标运动信息(包括方位角、俯仰角以及角速度)、目标信号幅度及其成像面积等,提出了一种基于多特征融合的弱红外运动目标跟踪方法。分析了红外成像系统中目标信号特点,得到目标的运动、幅度和面积具有一致性和连续性,符合高斯分布;采用概率数据关联滤波推导量测各特征的关联概率,并根据特征的波动状况确定多特征融合的加权系数,估计和更新目标运动状态。理论分析和实验结果表明:该方法的跟踪精度和稳定性都明显高于仅依靠运动特征关联和依靠运动特征和幅度特征关联的跟踪方法。 相似文献
15.
为解决单一特征目标跟踪鲁棒性较差的问题,提出一种基于颜色和空间信息的多特征融合目标跟踪算法。采用一种自适应划分颜色区间的方法提取目标颜色特征,利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将自适应颜色直方图和空间直方图相结合,在特征融合中引入特征不确定性度量方法,自适应调整不同特征对跟踪结果的贡献,提高算法的鲁棒性。仿真实验结果表明,该跟踪算法平均位置最小误差值仅6.967 像素,而单一特征跟踪算法以及传统融合算法的跟踪误差达192.576 像素和199.464像素。说明本文算法在跟踪准确性上优于单一特征跟踪算法及传统融合算法,具有更好的跟踪精度和更高的鲁棒性。 相似文献
16.
17.
针对基于孪生网络的目标跟踪算法存在抗干扰能力弱、鲁棒性差等问题,在SiamCAR基础上提出通道和空间注意力融合的目标跟踪算法。在特征提取子网络和分类回归子网络之间级联改进后的高效通道注意力和空间注意力模块,加强网络对互相关后响应图中重要通道特征和位置特征的关注,同时抑制不重要的特征信息。在OTB100上,所提算法在背景杂乱挑战下成功率和精度相比SiamCAR分别提高了3.1%和2.8%;在VOT2018上,所提算法的鲁棒性和期望平均重叠率相比SiamCAR分别提高了4.9%和2.2%。实验结果表明,所提算法增强了跟踪器的鲁棒性,提升了跟踪器在复杂场景下的跟踪效果。 相似文献
18.
随着现在的社会发展以及经济进步,我国的科学技术方面发展迅速,特别是在技术监控方面更是突飞猛进。为了更好的对目标遮挡影响进行降低,我国在这方面主要依据自适应的技术发展背景下提出目标跟踪计算法,用来完善我国的监督控制技术。这种计算方式第一是根据对观察目标的基本外观形态进行的鉴定与跟踪,将其自身的运动量进行平均计算;其次是根据时空的运行方向与特征进行跟踪目标的计算,建立比较完善整体的运行模型,再根据这个运动模型以及整体的状态对监督目标进行检测与控制,这期间就会形成一种遮挡掩膜。对于掩膜是一种将程序数据等绘制成光刻板,在程序使用期间非常可靠,并且制造成本比较低,使用方便;最后是在不同的使用情况下将不同参数进行收集,自动的适应运动模型的运行。针对这种计算方式的实验主要是利用两种在国际上经常使用的CAVIAR、York数据进行测试,并且根据这两种数据对测试的精准度与多重目标跟踪等进行评定,检测跟踪的整体性能。通过多方面的研究表明这种方式的跟踪的性能非常好,并且还能很好的将跟踪目标的鲁棒性进行遮挡。 相似文献
19.
20.
为提升TLD目标跟踪算法的每帧处理速度,以达到在更高分辨率视频中跟踪目标的实时性要求,在TLD算法框架的基础上,提出了一种基于自适应尺度检测学习的目标跟踪算法(AS-TLD)。当跟踪目标成功时,选取当前帧跟踪到的目标尺度及几个相邻的尺度作为下帧检测目标时滑动窗口尺度的选取范围;而当跟踪失败时,则选取在TLD算法初始化阶段,根据跟踪目标及视频图像大小选定的尺度来保障长时间跟踪目标,从而有效减少了平均每帧扫描的窗口数量。实验结果表明,该方法不仅有效地降低了检测模块的检测时间,显著提高了整体算法速度,而且通过动态选取尺度,在一定程度使得TLD各个模块更加协调,跟踪精确度得到提升。 相似文献