首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了实现高灵敏度的空间激光通信,并提高传输信道的抗干扰能力,将单光子探测技术和脉冲位置调制技术相结合,采用门控电路与反馈淬灭电路相结合的方式淬灭单光子探测器雪崩,设计了插入帧头法用于脉冲位置调制解调。用现场可编程门阵列进行了脉冲位置调制解调过程的仿真,验证了插入帧头法的有效性与可行性。在此基础上搭建了1 550 nm的脉冲位置调制激光通信实验,同时测试了单光子探测器在不同参数下的性能。结果表明,当探测效率为25%,触发延时为8.00 ns,门宽为5.0 ns,死时间为0.1μs时,单光子探测器性能最佳。最后测试了不同调制速率下单光子探测器的探测灵敏度,结果表明,当通信码速率为1 Mbps时,通信灵敏度为-51.8 dBm;当通信码速率为4 Mbps时,通信灵敏度为-41.0 dBm,实现了高灵敏度的空间激光通信。  相似文献   

2.
脉冲式光纤激光器受到其重复频率的限制,导致其数据传输速率较低,严重影响了其在通信领域的应用。为了改善其性能并使其能更好地应用到通信领域,针对脉冲式光纤激光器的这种缺点,通过三种脉冲位置调制(PPM)调制方式对其进行调制并对其性能的影响进行了实验研究。通过改变三种PPM调制的调制位数脉冲时隙宽度对脉冲式光纤激光器的调制速率的影响以及三种PPM调制方式对脉冲式光纤激光器的输出功率误码率的影响进行了仿真研究。分析结果表明,单脉冲位置调制(L-PPM)调制方式最适合脉冲式光纤激光器,可以将重复频率为200kHz的脉冲式光纤激光器的调制速率提高到1.387Mbit/s,该结果有利于脉冲式光纤激光器在通信中的应用。  相似文献   

3.
大气分子和气溶胶颗粒对紫外光具有强烈的散射作用,以紫外光作为信息载体可实现非直视通信。研究紫外光通信中的脉冲展宽效应对于减小码间干扰、提高系统传输速率具有重要意义。基于蒙特卡罗方法建立了非直视紫外光在非共面通信系统中的多次散射传播模型,利用此模型模拟了发射端出射的紫外光经多次散射到达接收端的全过程。结果表明,非直视紫外光在非共面通信系统中的脉冲响应的半峰全宽随着发射端和接收端仰角、接收端偏转角的增大而增大;多次散射对脉冲展宽的贡献随着发射端和接收端仰角增大而增大;采用开关键控调制方式,系统可传输的最大码速率随发射端和接收端仰角的增大而减小。  相似文献   

4.
大气信道对激光脉冲延迟时间影响的仿真研究   总被引:3,自引:0,他引:3  
分析了大气散射和吸收特性,并进一步研究了大气散射所引起的激光脉冲延迟效应,定量分析了在不同能见度、不同脉冲传输距离、不同散射系数和单程散射反照率的条件下,大气信道所产生激光脉冲传输延迟时间,为探测误差的校正提供了理论依据.通过对仿真结果的分析可知,在衰减系数不变的条件下,大气信道的散射越严重,散射所造成的路径延迟就越大,激光脉冲传输延迟时间也就越长;而大气的吸收效应越明显,激光脉冲传输延迟时间越短.  相似文献   

5.
大气信道对垂直发收模式紫外光散射通信性能影响的仿真   总被引:3,自引:3,他引:0  
介绍了非直视单散射信道模型及其在椭球坐标系下的求解方法.在此基础上,针对垂直发收模式,研究了大气信道对紫外光通信系统的影响.对不同天气、不同通信距离条件下,大气信道所产生的能量损耗、时间延迟和脉冲展宽等进行了定量分析和仿真.仿真结果表明:能量衰减随能见度变化曲线存在拐点,即并不是天气越好,能见度越高,系统接收能量越大;通信距离1km时,能见度18km处出现能量衰减最小值;能量衰减随通信距离非线性递增,通信距离1km时,能量衰减近100dB;随着通信距离的增加,时间延迟和脉冲展宽都近似呈线性增长,通信距离1km时,时间延迟接近5μs,脉冲展宽大于10μs.  相似文献   

6.
非视线紫外通信大气传输特性的蒙特卡罗模拟   总被引:3,自引:4,他引:3  
基于蒙特卡罗方法建立了紫外光非视线传输多次散射模型,利用单次散射近似法和实验方法验证了模型的有效性,并利用该模型完成了非视线紫外光通信大气传输特性的模拟.模拟时光波长取紫外光通信的最佳工作波段(250 nm附近),分析了不同传输距离下能见度、风、雨、雾等参量对系统能量透射比的影响.结果指出,系统能量透射比随传输距离增大而剧烈减小,在天气较差传输条件下能量衰减得更快;风力大小的变化对通信系统影响不大.较近距离通信传输时(一两百米),通信系统受天气条件的影响较小.  相似文献   

7.
丁莹  佟首峰  董科研  姜会林  付强 《光子学报》2014,39(10):1851-1856
介绍了非直视单散射信道模型及其在椭球坐标系下的求解方法.在此基础上,针对垂直发收模式,研究了大气信道对紫外光通信系统的影响.对不同天气、不同通信距离条件下,大气信道所产生的能量损耗、时间延迟和脉冲展宽等进行了定量分析和仿真.仿真结果表明:能量衰减随能见度变化曲线存在拐点,即并不是天气越好,能见度越高,系统接收能量越大|通信距离1 km时,能见度18 km处出现能量衰减最小值|能量衰减随通信距离非线性递增,通信距离1 km时,能量衰减近100 dB|随着通信距离的增加,时间延迟和脉冲展宽都近似呈线性增长,通信距离1 km时,时间延迟接近5 μs,脉冲展宽大于10 μs.  相似文献   

8.
米散射激光雷达测量大气水平能见度   总被引:1,自引:0,他引:1  
吴礼林  迟如利 《物理与工程》2007,17(4):21-23,28
激光雷达作为一种新型的大气观测工具,可以通过直接探测激光与大气相互作用的光辐射信号来定量地反演大气水平能见度,从而成为测量大气水平能见度的主要手段.正在研制的一台基于532nm波长的车载式米散射激光雷达,用于大气能见度的测量;简单介绍了正在研制的激光雷达的技术参数,给出了测量数据的处理方法;利用雷达的技术参数进行了模拟计算,显示了该激光雷达探测大气水平能见度的可靠性,计算误差显示在大气能见度为10km时该激光雷达的测量误差小于16%.  相似文献   

9.
小型米散射激光雷达的研制及其探测   总被引:2,自引:1,他引:2  
介绍了一台自行研制的用于大气气溶胶光学特性和水平能见度测量的小型米散射激光雷达系统,并进行了一系列观测实验和分析.系统选用532nm波长激光作为光源,采用Fernald反演算法对接收到的大气回波信号进行反演得到气溶胶消光系数.通过对西安城区上空的气溶胶光学特性进行连续观测,测得了西安城区不同时刻消光系数的高度分布廓线、以及24小时内大气边界层高度的时空变化特性,并对大气水平能见度进行了连续观测,其结果与当地气象部门提供的水平能见度数据的变化趋势基本一致.观测结果表明,利用该米散射激光雷达可以对大气气溶胶光学特性和水平能见度进行有效测量.  相似文献   

10.
太赫兹波在雾中的多重散射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
太赫兹(THz)波作为微波和毫米波的延伸,它所提供的通信带宽和容量远大于毫米波。在随机介质中传播时,不但会发生时域和空域的形变,介质中的粒子还会对入射波发生散射,这些都会使得脉冲信号发生衰减。根据Mie理论与随机离散分布粒子的波传播与散射理论,计算了THz波信号入射下雾滴粒子的消光系数。结合雾滴粒子谱分布,得到了雾媒质的平均体系散射特性,采用蒙特卡罗法得到了平流雾对THz信号的多重散射特性,计算了THz波段信号对平流雾的透过率与反射率,分析了THz波段信号的前向、后向散射特性随散射角的分布。结果表明,低能见度大气环境中,雾对THz波产生的吸收和衰减不容忽视。相关研究结果对THz在大气传输、通信等方面的应用具有重要意义。  相似文献   

11.
提出在1550 nm波段采用双波长相干超短脉冲光源抽运高非线性光纤获得超连续谱。双波长脉冲抽运能够加强光纤中的四波混频和交叉相位调制过程,从而在相同抽运光功率下,可获得宽度远大于单波长脉冲抽运的超连续谱。利用基于脉冲切割器和Mamyshev再生器的25 GHz双波长相干超短脉冲光源,在入纤功率为24.1 d Bm时,获得了130 nm宽度的超连续谱,并进一步证实了所获超连续谱谱线之间的相干性。  相似文献   

12.
大气激光通信链路的性能仿真   总被引:1,自引:3,他引:1  
大气衰减和大气湍流严重影响着大气激光通信的链路质量。建立了大气信道的激光通信链路模型,研究了衰减信道和湍流信道中光链路的传输影响,对最大通信速率、链路功率余量和误码率进行了分析和计算。结果表明,大气湍流严重影响系统误码率,当大气闪烁指数斫是0.07时,可达到的最小误码率为10^-9。分析结果可为系统设计提供参考依据。  相似文献   

13.
针对现有光空间脉冲位置调制频谱效率低、激光器利用率不高等问题,将分层技术与空间脉冲位置幅度调制相结合,提出了一种适合于大气激光通信的多层空间脉冲位置幅度调制方案.通过额外增加少量几个激光器构成多层结构,并通过脉冲位置幅度调制中的脉冲位置携带比特信息,不同层通过脉冲幅度得到区分.介绍了系统中层映射、空间脉冲位置幅度映射及其逆映射的原理,并推导出该方案的误码率表达式.利用蒙特卡洛仿真方法进一步验证了该方案的正确性,并与传统空间调制系统的性能进行了对比.结果表明:与传统光空间调制系统相比,所提方案提高了系统的频谱效率,且所用激光器数目更少.在传输比特相同的条件下,相对于(32,4,128)-空间脉冲位置调制系统,(9,4,8,2)-多层空间脉冲位置幅度调制系统的频谱效率提高了16倍,当误码率为10-3时,其信噪比改善了约1dB,且所用激光器数目不到前者的1/3.其中,括号中的参数分别表示激光器数目、探测器数目、采用调制方式的阶数及层数,层数为1时忽略.  相似文献   

14.
全波段正常色散光子晶体光纤中超连续谱的产生   总被引:2,自引:0,他引:2       下载免费PDF全文
李曙光  朱星平  薛建荣 《物理学报》2013,62(20):204206-204206
设计了一种铅硅酸盐SF57 材料的光子晶体光纤, 利用有限元法数值模拟了该光纤的 色散特性. 研究结果显示在整个透明波段光纤具有正常色散. 利用自适应分布傅里叶法求解非线性薛定谔方程, 对中心波长为1550 nm, 初始脉宽为150 fs 的脉冲在该光纤中传输进行了模拟, 获得了关于入射脉冲中心波长对称的展宽范围超过了600 nm 的超平坦连续光谱, 并且光谱具有极其稳定和 相干的特性. 关键词: 光子晶体光纤 超连续谱产生 正常色散  相似文献   

15.
王堃  崔亮  张秀婷  李小英 《物理学报》2013,62(16):164205-164205
信号与闲置光子波长均为1550 nm 通信波段的全光纤关联光子对源, 具有低成本以及可与现有光纤网络低损耗连接的特点. 进一步优化其纯度, 将有助于提高这种量子光源的实用化程度.当抽运脉冲光在光纤中传输时, 由于色散和Kerr非线性效应的影响, 会不可避免地引入啁啾. 本文利用脉冲激光抽运零色散位移光纤, 研究了抽运光啁啾对关联光子对纯度的影响. 结果表明, 通信波段小失谐关联光子对的纯度随啁啾的增大而下降. 若采用变换极限的锁模激光为抽运源, 将有助于抑制Raman散射对自发四波混频的影响, 提高光子对的纯度. 关键词: 关联光子对 光纤 自发四波混频 啁啾  相似文献   

16.
紫外激光雷达后向散射光强的模拟计算   总被引:3,自引:0,他引:3  
根据瑞利散射和米散射理论建立了大气散射的模型,确定了米散射和瑞利散射的体角散射系数的计算公式,讨论了大气对激光任意方向的散射强度及散射光的偏振特性。对于波长为266nm的紫外光,通过仿真计算得到相应条件下的大气分子和气溶胶的后向散射系数及后向散射比,并对计算结果进行了分析。结果表明紫外波段具有散射强度大,抗干扰性强等优点,可以用于近距离的大气分子探测。通过对近距离探测大气的脉冲激光雷达的大气后向散射光强的仿真计算,合理的设置小孔光阑的参数,解决近端较强散射光的问题。这些仿真研究对紫外激光雷达系统的设计提供了指导。  相似文献   

17.
基于RS编码及网格编码调制的光PPM通信纠错技术   总被引:1,自引:0,他引:1  
梁波  陈卫标 《光子学报》2008,37(7):1361-1364
分析了RS(Reed-Solomon)纠错码和网格编码调制(Trellis Coded Modulation,TCM)技术在光脉冲位置调制通信中的应用.在此基础上,提出了以RS码作为外码,以网格编码调制技术作为内码,用于光脉冲位置调制通信的新编码方案,能以几乎不减少通信速率的优势,提高传统RS码系统在时变带限光信道中的通信性能.模拟研究了在不同空间光信道条件下,传统RS码的符号正确传输率和误码率,并对网格编码调制的编码增益、RS码与网格编码调制级联时的编码增益进行了仿真研究,证实了本方案的有效性.  相似文献   

18.
将InGaAs/InP雪崩光电二极管应用于盖革模式下,采用门脉冲模式淬灭雪崩,并使用魔T混合网络抑制尖峰噪声,实现了通信波段1550 nm的单光子探测.在APD工作温度为223 K时,测得暗计数率与探测效率的比值为0.035.  相似文献   

19.
大气传输对激光后向散射式能见度测试的影响及理论研究   总被引:5,自引:1,他引:4  
激光在大气传输时,大气中的气体分子、气溶胶粒子、雾、雨等对激光的吸收和散射将导致激光回波能量衰减,这是影响激光后向散射式能见度测量的主要因素。通过对大气散射、大气湍流、大气吸收和气象条件与激光后向散射的关系进行理论分析,对后向散射式能见度测量的可行性进行了理论分析和论证,并提出了利用激光后向散射进行大气能见度测试的数学模型,为进一步研究和提高激光后向散射式能见度测距仪的性能提供了理论依据。  相似文献   

20.
无线紫外光局域通信是在短距离内实现全方位信息安全传输的有效途径之一,其中数据传输速率是该类通信系统的重要技术指标。从常用的紫外收发通信系统结构出发,研究无线紫外光局域通信数据传输速率的影响因素。研究结果表明:大气信道和紫外光源的选择对系统数据传输速率影响较大;由于大气散射信道的多径时延,系统的最大调制速率受到限制,当通信距离较短或天气环境较好时,系统的最大调制速率较高;紫外光源中,低压汞灯最大调制速率20kHz,紫外LED最大调制速率为几兆赫兹左右。相关研究成果为高速紫外光局域网络的设计与应用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号