首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用密度泛函理论对丙烯腈单体自由基(CH3)2(CN)C-CH2-(CN)CH两种终止反应过程中各原子态密度变化进行研究.用B3LYP/6-31G(d)基组对反应物、偶合中间体、过渡态和产物的结构进行优化,计算了各物种的红外频率和各原子的态密度.研究结果表明,偶合中间体a和歧化产物P的化学稳定性较好,丙烯腈单体自由基R和过渡态TS的化学稳定性比较差;各驻点物种的HOMO、LUMO轨道基本是相同原子贡献,且C、N原子贡献程度基本在95%左右;丙烯腈单体自由基R、过渡态TS的HOMO、LUMO相对比较独立,与前线轨道附近的其他能级(HOMO-2、HOMO-1、LUMO+1、LUMO+2)的能量差比较大.  相似文献   

2.
本文采用密度泛函理论对丙烯腈单体自由基(CH3)2(CN)C-CH2-(CN)CH两种终止反应过程中各原子态密度变化进行研究.用B3LYP/6-31G(d)基组对反应物、偶合中间体、过渡态和产物的结构进行优化,计算了各物种的红外频率和各原子的态密度.研究结果表明,偶合中间体a和歧化产物P的化学稳定性较好,丙烯腈单体自由基R和过渡态TS的化学稳定性比较差;各驻点物种的HOMO、LUMO轨道基本是相同原子贡献,且C、N原子贡献程度基本在95%左右;丙烯腈单体自由基R、过渡态TS的HOMO、LUMO相对比较独立,与前线轨道附近的其他能级(HOMO-2、HOMO-1、LUMO+1、LUMO+2)的能量差比较大.  相似文献   

3.
We propose a physical model based on disordered (a hole punched inside a material) monolayer transition metal dichalcogenides (TMDs) to demonstrate a large‐gap quantum valley Hall insulator. We find an emergence of bound states lying inside the bulk gap of the TMDs. They are strongly affected by spin–valley coupling, rest‐ and kinetic‐mass terms and the hole size. In addition, in the whole range of the hole size, at least two in‐gap bound states with opposite angular momentum, circulating around the edge of the hole, exist.Their topological insulator (TI) feature is analyzed by the Chern number, characterized by spacial distribution of their probabilities and confirmed by energy dispersion curves (energy vs. angular momentum). It not only sheds light on overcoming low‐temperature operating limitation of existing narrow‐gap TIs, but also opens an opportunity to realize valley‐ and spin‐qubits. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
An empirical expression for the energy bandgap as a function of alloy composition x and temperature for In1−xAlxSb was reported. The In1−xAlxSb epitaxial layers were grown by molecular beam epitaxy (MBE) on InSb(1 0 0) substrate, utilizing a p+–p+nn+ structure. High resolution X-ray diffraction was used to characterize the epitaxial layers. The Al composition of 2.8% was obtained by assuming the Bragg’s formula and Vegard’s law. Spectral response measurement of the diodes has been employed to investigate the temperature dependence of the band gap of In1−xAlxSb alloys in the range between 77 K and 260 K. The calculated results for energy gap of InAlSb were in good agreement with the available data and our experimental observation.  相似文献   

5.
The influence of vacancy percentage on the energy gap of zigzag single-wall carbon nanotube is investigated by the Green's function method in coherent potential approximation. Our probes for various kinds of zigzag single-wall carbon nanotubes show that by increasing vacancy percentage the energy gap is also increased, so for metallic single-wall carbon nanotubes, a metallic to semi-metallic transition is occurred. However, any transition does not appear for semiconductor carbon nanotubes. So by controlling on concentration of vacancies, one can make a semiconductor SWCNT with a predetermined energy gap which is useful in nanoelectronic devices.  相似文献   

6.
An analysis is presented of experimental and theoretical results of the MnFeAsyP1−y (0.15≤y≤0.66) and Mn2−xFexAs0.5P0.5 (0.5≤x≤1.0) systems to identify main traits that underlie the mechanism of formation of different antiferromagnetic (AF) phases in the two systems. The discrepancy between the calculated from first principles and experimental values of the magnetic moment in the ferromagnetic phase with cation substitution in the system Mn2−xFexAs0.5P0.5 is due to the appearance of a canted magnetic structure. In this case, the emergence of an AF phase with decreasing iron concentration precedes a significant change in the electronic d-band filling. In the model of the spiral structure in the system of itinerant electrons it is shown that the stabilization of the AF phase with decreasing arsenic concentration, while maintaining the number of d-electrons, is a consequence of changes in the shape of the density of electronic states that occur with a decrease in unit-cell volume.  相似文献   

7.
We prove a Goldstone-type theorem for a wide class of lattice and continuum quantum systems, both for the ground state and at nonzero temperature. For the ground state (T=0) spontaneous breakdown of a continuous symmetry implies no energy gap. For nonzero temperature, spontaneous symmetry breakdown implies slow clustering (noL 1 clustering). The methods apply also to nonzero-temperature classical systems.Partial financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo.Partial financial support by CNPq.  相似文献   

8.
The structural and electronic properties of neutral and negatively charged Ga12X (X=C, Si, Ge, Sn, and Pb) clusters are calculated by the first-principles method. The results show that the most stable symmetry depends on the doped atom rather than the geometry structure. However, the geometry symmetry plays an important role in calculating the energy gap. In addition, in the anionic clusters, the added electron would reduce the energy gap by about 0.4 eV. As for the density of states (DOS), clusters with the same symmetry show a similar trend of DOS. The major impact on DOS by adding an electron is the occurrence of relative energy shift.  相似文献   

9.
10.
11.
Metal oxide/metal bilayers have been prepared by in situ oxidation. Ultrathin layers with antiferromagnetic properties are formed at room temperature by controlled in situ exposure of clean Fe, Co and Ni layers to pure oxygen gas. X-ray diffraction, Auger electron spectroscopy and transmisson electron microscopy have been applied to provide a detailed analysis of the layered structure. The magnetic properties of these antiferromagnetic/ferromagnetic bilayers are characterized by an interfacial coupling (exchange bias) which drastically varies with the type of antiferromagnetic material.  相似文献   

12.
张治国 《中国物理 B》2010,19(12):127802-127802
In this paper the fabrication technique of amorphous SnO 2:(Zn,In) film is presented.The transmittance and gap-states distribution of the film are given.The experimental results of gap-states distribution are compared with the calculated results by using the facts of short range order and lattice vacancy defect of the gap states theory.The distribution of gap state has been proved to be discontinuous due to the short-range order of amorphous structure.  相似文献   

13.
基于第一性原理方法研究了Mn,N单掺SnO2及Mn-N共掺SnO2的能带结构以及态密度。研究结果表明:单掺和共掺均能使带隙值降低,态密度能量向低能级方向移动,费米能级附近出现杂质能级,材料导电性增强。Mn-N共掺SnO2材料与Mn单掺相比价带顶和导带顶能级出现分离,带隙中出现的杂质能级更多,Mn的分波态密度更加弥散, Mn-N共掺使Mn的掺入更加容易。  相似文献   

14.
Under a large tensile strain near fracture limit, the band structures of single-wall carbon nanotubes (SWCNTs) with diameter less than 0.5 nm begin a metal to semiconductor transition and these ultra-small SWCNTs can normally maintain their metallicities. The band gap behavior of these SWCNTs intrinsically originates from the long axial direct bond lengths and the severe curvature. The gap opening comes mainly from the transfer of pπ electrons. And the localized π and σ states can result in a lower electrical conductivity. This band gap behavior suggests that it has potential to find applications in nano-electromechanical system.  相似文献   

15.
理论上对分子间色散相互作用能的精确计算一直是个难点问题.密度矩阵泛函基于非定域量一阶密度矩阵为基本变量,它与色散相互作用起源于电子间的非定域关联特性相吻合.论文以最简单的氢分子为研究对象,通过分析两相互平行的氢分子间色散相互作用能,构造出了该体系中色散相互作用能的自然轨道泛函.结果表明:描述该体系中色散相互作用能的自然轨道泛函形式为包含有4个轨道的非交换和库伦积分.该结果对发展色散相互作用能的密度矩阵泛函理论具有重要的参考价值.  相似文献   

16.
We propose a model to study the magnetic phase transition in the Colossal-Magneto-Resistance (CMR) material of general type R1−x A x MnO3 (R = La, Sm, Nd; A = Ca, Sr, Ba). The model Hamiltonian consists of a Charge Density Wave (CDW) gap in the e g -band and the strong magnetic field due to the spin ordering in the localized t g core electrons. The Hamiltonian is solved by using Zubarev’s Green’s function technique to calculate CDW gap (Δ) and magnetization (M d ) in t 2g band. Both of them are solved self-consistently. Their combined effect on the temperature dependent magnetization (M c ) due to the e g band electrons is investigated. Both the magnitude and the transition temperature of (M c ) are strongly influenced by both Δ and M d . Hence the hopping of the band electrons are strongly controlled by these two long range interactions. The results are discussed by varying the model parameters of the manganite system.   相似文献   

17.
纳米体系中发光能隙展宽的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘一星  余亚斌  张丽  全军 《物理学报》2008,57(11):6751-6757
采用两种简单的一维模型,通过直接严格求解该模型下薛定鄂方程给出晶场中的限域情况下电子能级结构以及纳米体系中电子的限域能,从而研究体系的发光蓝移现象.基于限域能的计算,讨论了纳米体系的限域能和发光蓝移随尺寸以及势场的变化关系.结果表明:导带底的电子能级随体系的尺寸增大而降低;而价带顶则随粒径的增大而升高,因此,限域能随纳米尺寸的减小迅速增大.同时将计算结果与通常文献中所采用的有效质量计算的结果进行比较,可以看出二者有明显差别,且尺寸越小,其差异越大.因此,限域能随尺寸的变化并不严格满足通过有效质量方法计算出 关键词: 蓝移 能隙 量子限域效应 量子尺寸  相似文献   

18.
Blue light emitting diodes (LED) consisting of InGaN/GaN multiple quantum wells (MQWs) have been grown by metal organic chemical vapor deposition (MOCVD) on sapphire. The width of the quantum wells (InGaN) was maintained in the range of 3–5 nm with a barrier of 10–15 nm of GaN. Various diagnostic techniques were employed for the characterization of the InGaN/GaN heterostructure. Carrier concentration depth profile from CV measurements demonstrated the presence of MQWs. The higher value of built-in voltage (15 V) determined from C−2V plot also supported the presence of MQWs as assumed to alter the space-charge region width and hence the intercept voltage. Arrhenius plots due to DLTS spectra from the device revealed at least four energy states (eV) 0.1, 0.12, 0.15 and 0.17, respectively in the quantum wells, with respect to the barrier. Further the photoluminescence spectrum showed an InGaN-based broad band centered at 2.9 eV and the GaN peak at 3.4 eV. A comparison of the PL spectrum with the literature helped to estimate the indium content in the QW (InGaN) and its width to be ∼13% and ∼3 nm, respectively. The results were consistent with the DLTS findings.  相似文献   

19.
Photocatalyst titanium dioxide (TiO2) thin films were prepared using sol-gel process. To improve the photosensitivity of TiO2 at visible light, transition metal of Fe was implanted into TiO2 matrix at 20 keV using the metal plasma ion implantation process. The primary phase of the Fe-implanted TiO2 films is anatase, but X-ray diffraction revealed a slight shift of diffraction peaks toward higher angles due to the substitutional doping of iron. The additional band gap energy levels were created due to the formation of the impurity levels (Fe-O) verified by X-ray photoelectron spectroscopy, which resulted in a shift of the absorption edge toward a longer wavelength in the absorption spectra. The optical band gap energy of TiO2 films was reduced from 3.22 to 2.87 eV with an increase of Fe ion dosages from 0 to 1 × 1016 ions/cm2. The band gap was determined by the Tauc plots. The photocatalysis efficiency of Fe-implanted TiO2 was assessed using the degradation of methylene blue under ultraviolet and visible light irradiation. The calculated density of states for substitutional Fe-implanted TiO2 was investigated using the first-principle calculations based on the density functional theory. A combined experimental and theoretical Fe-implanted TiO2 film was formed, consistent with the experimentally observed photocatalysis efficiency of Fe-implanted TiO2 in the visible region.  相似文献   

20.
The fundamental absorption edge of SmN is measured by the optical reflection and the transmission technique using a FTIR spectrometer. The MgF2 passivated thin films of SmN were grown by thermal evaporation. The optical spectra was collated in the energy range of 0.5 to 5.0 eV, and the optical energy gap is measured at 1.2 eV, the same as that of DyN. The measured value of the onset of the absorption in SmN does agree with that theoretically calculated, if the spin–orbit coupling is accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号