共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] Under basic conditions, 2'-aldehydo (acetonyl) 2-O-Ms(Ts)-alpha-C-glycosides undergo an intramolecular S(N)2 reaction to form 1,2-cyclopropanated sugars, which react with nucleophiles (alcohols, thiols, and azide) at the anomeric carbon to give 2-C-branched glycosides. By way of contrast, the 1,2-cyclopropanes derived from 2'-ketones only react with thiols to give 2-C-branched thioglycosides. 相似文献
2.
An efficient methodology for the synthesis of 2-C-branched glyco-amino acid derivatives by diastereoselective ring opening of 1,2-cyclopropanecarboxylated sugars in good yields is reported. [reaction--see text] 相似文献
3.
1,2-Cyclopropaneacetylated sugars as glycosyl donors reacted with a series of glycosyl acceptors (monosaccharides, amino acids, and other alcohols) in the presence of Lewis acid to produce oligosaccharides and glycoconjugates containing 2-C-acetylmethylsugars. Galactosyl donor gave good to excellent α-selectivities with TMSOTf as a catalyst, whereas galactosyl donor offered moderate to good β-selectivities when BF(3)·Et(2)O was used as a catalyst. However, glucosyl donors produced β-exclusive selectivity under both conditions. The stereoselectivities of glycosylation depend on the reactivity of donor sugars and Lewis acid catalyst, which effectively dictated the glycosylation pathways. The evidence suggests that galactosyl donors (e.g., 7) can undergo S(N)1 pathway with a strong Lewis acid (TMSOTf) and S(N)2 pathway under BF(3)·Et(2)O, whereas the glucosyl donors (e.g., 8 and 10) followed S(N)2 pathway. The stereoselectivity was also consequential to the formation of a C2'-acetal intermediate formed via the 2-C-acetylmethyl group and the anomeric carbonium intermediate in glycosylation. 相似文献
4.
[reaction: see text] Cyclic 1,2-thiocarbonate sugars are convenient starting materials for the selective and efficient preparation of glycofuranosyl azides and nucleosides by regio- and stereoselective thiocarbonate ring-opening. 相似文献
5.
Mukhopadhyay B Kartha KP Russell DA Field RA 《The Journal of organic chemistry》2004,69(22):7758-7760
Solvent-free per-O-acetylation of sugars with stoichiometric acetic anhydride and catalytic iodine proceeds in high yield (90-99%) to give exclusively pyranose products as anomeric mixtures. Without workup, subsequent anomeric substitution employing iodine in the presence of hexamethyldisilane (i.e., TMS-I generated in situ) gives the corresponding glycosyl iodides in 75-95% isolated yield. Alternatively, and without workup, further treatment with dimethyl disulfide or thiol (ethanethiol or thiocresol) gives anomerically pure thioglycosides in more than 75% overall yield. 相似文献
6.
Peter W. Moore Julia K. Schuster Russell J. Hewitt M. Rhia L. Stone Paul H. Teesdale-Spittle Joanne E. Harvey 《Tetrahedron》2014
The ring opening of 1,2-(gem-dibromo)cyclopropyl carbohydrates by two different modes leads to either 2-C-(bromomethylene)pyranosides (using base) or 2-bromooxepines (using silver salts), as shown previously by us for a d-glucal-derived cyclopropane. The base-promoted ring opening is extended to encompass additional alcohol, thiol and amine nucleophiles, and diastereoisomeric cyclopropane precursors. Cross-coupling of the 2-C-(bromomethylene)pyranosides leads to extended 2-C-branched pyranosides. Silver-promoted ring expansion of the cyclopropyl carbohydrates in the presence of various alcohols is described. Cross-coupling of the resulting benzyl 2-bromooxepines affords 2-C-substituted oxepines. 相似文献
7.
A facile and efficient method for the synthesis of 2,4-dihalo-3-thio-furans via the electrophilic cyclization and 1,2-migration of the thio group of 4-thio-but-2-yn-1-ols was developed. As a result of the ready availability of starting materials and the simple and convenient operation, this synthetic route would have potential utility in organic synthesis. 相似文献
8.
Alpha-glycosyl amides can be synthesized from the corresponding O-benzyl-alpha-glycosyl azides using a traceless Staudinger ligation with diphenylphosphanyl-phenyl esters 4. All the phosphines employed and their phenol precursors are stable to air at 4 degrees C for months. Fast intramolecular trapping of the reduction intermediates results in the direct formation of the amide link, which, in turn, prevents epimerisation and allows retention of configuration at the anomeric carbon. Yields and alpha-selectivity are high when the reaction is performed in polar aprotic solvents. Removal of the benzyl ether protecting groups is achieved by catalytic hydrogenation. Alpha-glycosyl amides represent a class of virtually unexplored nonhydrolyzable monosaccharide derivatives that may find a useful application as sugar mimics. Conformational studies by NMR spectroscopy confirm that deprotected alpha-glycosyl amides in the gluco, galacto, and fuco series retain the normal pyranose conformation of the monosaccharide. The reaction of phosphines 4 with tetra-O-acetyl-glycosyl azides is nonstereoconservative, and beta-glycosyl amides are obtained in good yields and with complete stereoselectivity starting from both alpha and beta azides. 相似文献
9.
Three-component 1,2-carboamination of vinyl boronic esters with alkyl/aryl lithium reagents and N-chloro-carbamates/carboxamides is presented. Vinylboron ate complexes generated in situ from the boronic ester and an organo lithium reagent are shown to react with readily available N-chloro-carbamates/carboxamides to give valuable 1,2-aminoboronic esters. These cascades proceed in the absence of any catalyst upon simple visible light irradiation. Amidyl radicals add to the vinylboron ate complexes followed by oxidation and 1,2-alkyl/aryl migration from boron to carbon to give the corresponding carboamination products. These practical cascades show high functional group tolerance and accordingly exhibit broad substrate scope. Gram-scale reaction and diverse follow-up transformations convincingly demonstrate the synthetic potential of this method.Three-component 1,2-carboamination of vinyl boronic esters with alkyl/aryl lithium reagents and N-chloro-carbamates/carboxamides is presented.Alkenes are important and versatile building blocks in organic synthesis. 1,2-Difunctionalization of alkenes offers a highly valuable synthetic strategy to access 1,2-difunctionalized alkanes by sequentially forming two vicinal σ-bonds.1a–h Among these vicinal difunctionalizations, the 1,2-carboamination of alkenes, in which a C–N and a C–C bond are formed, provides an attractive route for the straightforward preparation of structurally diverse amine derivatives (Scheme 1a).2a–c Along these lines, transition-metal-catalyzed or radical 1,2-carboaminations of activated and unactivated alkenes have been reported.3a–p However, the 1,2-carboamination of vinylboron reagents, a privileged class of olefins,4a–h to form valuable 1,2-aminoboron compounds which can be readily used in diverse downstream functionalizations,5a–c,6a–d has been rarely investigated. To the best of our knowledge, there are only two reported examples, as shown in Schemes 1b and c. In 2013, Molander disclosed a Rh-catalyzed 1,2-aminoarylation of potassium vinyltrifluoroborate with benzhydroxamates via C–H activation (Scheme 1b).7 Thus, the 1,2-carboamination of vinylboron reagents is still underexplored but highly desirable.Open in a separate windowScheme 1Intermolecular 1,2-carboamination of alkenes.1,2-Alkyl/aryl migrations induced by β-addition to vinylboron ate complexes have been shown to be highly reliable for 1,2-difunctionalization of vinylboron reagents (Scheme 1c).4d–h In 1967, Zweifel''s group developed 1,2-alkyl/aryl migrations of vinylboron ate complexes induced by an electrophilic halogenation.8 In 2016, the Morken group reported the electrophilic palladation-induced 1,2-alkyl/aryl migration of vinylboron ate complexes.9a–k Shortly thereafter, we,10a–c Aggarwal,11a–c and Renaud12 developed alkyl radical induced 1,2-alkyl/aryl migrations of vinylboron ate complexes. In these recent examples, the migration is induced by a C-based radical/electrophile, halogen and chalcogen electrophiles.13a,bIn contrast, N-reagent-induced migration of vinylboron ate complexes proceeding via β-amination is not well investigated. To our knowledge, as the only example the Aggarwal laboratory described the reaction of a vinylboron ate complex with an aryldiazonium salt as the electrophile, but the desired β-aminated rearrangement product was formed in only 9% NMR yield (Scheme 1c).13a No doubt, β-amino alkylboronic esters would be valuable intermediates in organic synthesis. Encouraged by our continuous work on amidyl radicals14a–i and 1,2-migrations of boron ate complexes,10a–c,15a–f we therefore decided to study the amidyl radical-induced carboamination of vinyl boronic esters for the preparation of 1,2-aminoboronic esters. N-chloroamides were chosen as N-radical precursors,16a–c as these N-chloro compounds can be easily prepared from the corresponding N–H analogues.17 Herein, we present a catalyst-free three-component 1,2-carboamination of vinyl boronic esters with N-chloroamides and readily available alkyl/aryl lithium reagents (Scheme 1d).We commenced our study by exploring the reaction of the vinylboron ate complex 2a with tert-butyl chloro(methyl)carbamate 3a applying photoredox catalysis. Complex 2a was generated in situ by addition of n-butyllithium to the boronic ester 1a in diethyl ether at 0 °C. After solvent removal, the photocatalyst fac-Ir(ppy)3 (1 mol%) and THF were added followed by the addition of 3a. Upon blue LED light irradiation, the mixture was stirred at room temperature for 16 hours. To our delight, the desired 1,2-aminoboronic ester 4a was obtained, albeit with low yield (26%, Entry Photocatalyst Solvent T (°C) Yieldb (%) 1 fac-Ir(ppy)3 THF rt 26 2 fac-Ir(ppy)3 DMSO rt 2 3 fac-Ir(ppy)3 MeCN rt 56 4 Ru(bpy)3Cl2·6H2O MeCN rt 69 5 Na2Eosin Y MeCN rt 69 6c Na2Eosin Y MeCN rt 70 7c None MeCN rt 45 8c None MeCN 0 78 9c None MeCN −20 88 (85) 10c,d None MeCN −20 2