首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A study on electron transfer in three electron donor-acceptor complexes is reported. These architectures consist of a zinc phthalocyanine (ZnPc) as the excited-state electron donor and a fullerene (C60) as the ground-state electron acceptor. These complexes are brought together by axial coordination at ZnPc. The key variable in our design is the length of the molecular spacer, namely, oligo-p-phenylenevinylenes. The lack of appreciable ground-state interactions is in accordance with strong excited-state interactions, as inferred from the quenching of ZnPc centered fluorescence and the presence of a short-lived fluorescence component. Full-fledged femtosecond and nanosecond transient absorption spectroscopy assays corroborated that the ZnPc ⋅ +-C60 charge-separated state formation comes at the expense of excited-state interactions following ZnPc photoexcitation. At a first glance, the ZnPc ⋅ +-C60 charge-separated state lifetime increased from 0.4 to 86.6 ns as the electron donor-acceptor separation increased from 8.8 to 29.1 Å. A closer look at the kinetics revealed that the changes in charge-separated state lifetime are tied to a decrease in the electronic coupling element from 132 to 1.2 cm−1, an increase in the reorganization energy of charge transfer from 0.43 to 0.63 eV, and a large attenuation factor of 0.27 Å−1.  相似文献   

2.
A coumarin derivative with a malonate unit has been synthesized and used for the preparation of a fullerene–coumarin dyad through the Bingel cyclopropanation method. The newly synthesized dyad is soluble in organic solvents and has been fully characterized with traditional spectroscopic techniques. Electronic interactions between the two components of the dyad were probed with the aid of UV/Vis spectroscopy, fluorescence emission, and electrochemistry measurements. Our studies clearly show the presence of electronic interactions between C60 and modified coumarin in the ground state; efficient electron‐transfer quenching of the singlet excited state of the coumarin moiety by the appended fullerene sphere was also observed. Time‐resolved fluorescence measurements revealed lifetimes for the coumarin–C60 dyad at a maximum of 50 ps, while the quantum yield was reaching unity. Additionally, the redox potentials of the C60–coumarin dyad were determined and the energetics of the electron‐transfer processes were evaluated. Finally, after alkaline treatment of C60–coumarin, which resulted in the deprotection of carboxylate units, the dyad was tested as a metal receptor for divalent metal cations; ion competition studies and fluorescence experiments showed binding selectivity for lead ions.  相似文献   

3.
A hexaphenylbenzene-based zinc porphyrin dyad forms a 1:1 complex with a fullerene bearing two pyridyl groups via coordination of the pyridyl nitrogens with the zinc atoms. The fullerene is symmetrically located between the two zinc porphyrins. The binding constant for the complex is 7.3 x 10(4) M(-1) in 1,2-difluorobenzene. Photoinduced electron transfer from a porphyrin first excited singlet state to the fullerene occurs with a time constant of 3 ps, and the resulting charge-separated state has a lifetime of 230 ps. This self-assembled construct should form a basis for the construction of more elaborate model photosynthetic antenna-reaction center systems.  相似文献   

4.
The synthesis and photophysics of a series of porphyrin-fullerene (P-C60) dyads in which the two chromophores are linked by conformationally flexible polyether chains is reported. Molecular modeling indicates the two moieties adopt a stacked conformation in which the two chromophores are in close proximity. Photoexcitation of the free base dyads in polar solvents such as tetrahydrofuran and benzonitrile, causes electron transfer (ET) to generate charge-separated radical pair (CSRP) states, which were directly detected using transient absorption (TA) techniques. In nonpolar solvents such as toluene, where CSRP states were not directly detected, fullerene triplet state states were formed, according to TA studies as well as singlet oxygen sensitization measurements. The low value of the quantum efficiency for sensitized formation of singlet molecular oxygen [O2(1Δg)] in toluene and chloroform indicates that singlet energy transduction to give H2P-1C60*, followed by intersystem crossing to H2P-3C60* and energy transfer to 3O2, is not the operative mechanism. Rather, a mechanism is proposed involving ET to give CSRP states followed by exergonic charge recombination to eventually generate fullerene triplets. Such a mechanism has been demonstrated experimentally for structurally related P-C60 dyads. For the corresponding ZnP-C60 dyads with flexible linkers, only photoinduced ET to generate long-lived CSRP states is observed. Photoinduced charge separation in these dyad systems is extremely rapid, consistent with a through space rather than through-bond mechanism. Charge recombination is up to three orders of magnitude slower, indicating this process occurs in the inverted region of the Marcus curve that relates ET rates to the thermodynamic driving force. These observations once again demonstrate the advantages of incorporating fullerenes as electron acceptor components in photosynthetic model systems.  相似文献   

5.
The two molecular triads 1a and 1b consisting of a porphyrin (P) covalently linked to a fullerene (C60) electron acceptor and tetrathiafulvalene (TTF) electron‐donor moiety were synthesized, and their photochemical properties were determined by transient absorption and emission techniques. Excitation of the free‐base‐porphyrin moiety of the TTF−P2 H−C60 triad 1a in tetrahydro‐2‐methylfuran solution yields the porphyrin first excited singlet state TTF−1P2 H−C60, which undergoes photoinduced electron transfer with a time constant of 25 ps to give TTF−P2 H.+−C60.−. This intermediate charge‐separated state has a lifetime of 230 ps, decaying mainly by a charge‐shift reaction to yield a final state, TTF.+−P2 H−C60.−. The final state has a lifetime of 660 ns, is formed with an overall yield of 92%, and preserves ca. 1.0 eV of the 1.9 eV inherent in the porphyrin excited state. Similar behavior is observed for the zinc analog 1b . The TTF‐PZn.+−C60.− state is formed by ultrafast electron transfer from the porphyrinatozinc excited singlet state with a time constant of 1.5 ps. The final TTF.+−PZn−C60.− state is generated with a yield of 16%, and also has a lifetime of 660 ns. Although charge recombination to yield a triplet has been observed in related donor‐acceptor systems, the TTF.+−P−C60.− states recombine to the ground state, because the molecule lacks low‐energy triplet states. This structural feature leads to a longer lifetime for the final charge‐separated state, during which the stored energy could be harvested for solar‐energy conversion or molecular optoelectronic applications.  相似文献   

6.
Two reaction center-antenna models based on a purpurin macrocycle linked to a C60 and to a carotenoid polyene have been synthesized. In these systems the C60 moiety is the primary electron acceptor, the purpurin is the primary electron donor and the carotenoid moiety acts both as an antenna and secondary electron donor. Formation of the initial charge separated state, C-Pur+-C60, following excitation with light absorbed by either the purpurin or C60 takes place on the 10 ps time scale. The final charge separated state, C+-Pur-C60, is formed in one of the compounds with a quantum yield of 32% based upon light absorbed by the carotenoid. In order to function as an antenna, the carotenoid pigment must be electronically coupled to the purpurin. The purpurin C ring provides an excellent framework for locating a carotenoid polyene in partial conjugation with the macrocycle, leading to a relatively strong electronic communication between the chromophores; functionalization of a meso position of the purpurin provides a site for the covalent attachment of C60.  相似文献   

7.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

8.
The modeling of the molecular and electronic structures of the following mono- and biosmium complexes of fullerene C60 was performed by quantum chemical methods (MNDO/PM3 and DFT/PBE): (??2-C60)[Os(PPh3)2(CO)CNMe], (??2,??2-C60)[Os(PPh3)2(CO)(CNMe)]2, (??2-C60)[Os(PH3)2(CO)H], (??2,??2-C60)[Os(PH3)2(CO)H]2, (??2-C60)[Os(PH3)2(CO)CNMe], (??2,??2-C60)[Os(PH3)2(CO)CNMe]2, and (5-C60H5)[Os(C5H5)], (5, 5-C60H10)[Os(C5H5)]2.The osmium atoms in the first six complexes are ??2-coordinated by fullerene C60. In the last two complexes, the ??5-coordination mode is observed. The structures of the radical anions of these complexes were calculated. The energies of the frontier orbitals were evaluated. The acceptor properties of the complexes are discussed. The electron affinities were estimated in two ways: from the energy of the lowest unoccupied molecular orbital (LUMO) and as the energy difference between the neutral molecule and its radical anion.  相似文献   

9.
研究了在光照下,乙二胺四乙酸(EDTA)的添加促进石墨相氮化碳(g-C3N4)光催化降解甲基橙(MO).研究了H+和羧酸根负离子对光降解MO的影响.紫外-可见漫反射光谱(DRS)研究表明,EDTA的加入并没有改变g-C3N4的电子结构和光电特性.EDTA的加入捕获了空穴(h+),促进了光生e-/h+对的分离,从而使光降解活性提高.证明了·O2-是光催化降解过程中的主要活性物种.基于上述研究结果,我们提出了一种可能的EDTA促进g-C3N4光催化降解MO的机理.这些结果为提高g-C3N4光催化降解水体中有机污染物的性能提供了一种新方法.  相似文献   

10.
The homodinuclear bismetallacyclopropa[60]fullerene complexes (η2-C60)M(μ-η11-trans-Ph2PCHCH PPh2)2M(η2-C60) (1, M = Pt; 2, M = Pd) were prepared by reaction of C60 with M(dba)2 (dba = dibenzylideneacetone) and trans-1,1′-bis(diphenylphosphino)ethylene in 82% and 92% yield, whereas reaction of C60 with Pd(dba)2 and trans-dppet followed by treatment with C60 and Pt2(dba)3 gave rise to the heterodinuclear complex (η2-C60) Pd(μ-η11-trans-Ph2PCHCH PPh2)2Pt(η2-C60) (3) in 65% yield. Mechanistic study showed that these reactions involve the intermediates of monometallacyclopropa[60]fullerene diphosphine ligands (η2-C60)M(η1-trans-Ph2PCHCHPPh2)2 (4, M = Pt; 5, M = Pd). All the mono- and bismetallacyclopropa[60]fullerene complexes 1-5 have been fully characterized by elemental analysis and spectroscopy, as well as for 2 by X-ray crystallography.  相似文献   

11.
Summary A procedure for labeling of a fullerene derivative 1-[N',N'-bis(2-chloroethyl)-4-aminophenyl]-N-methyl-fullereno-C60-[1,9-c]pyrrolidine (C60-C13H18N2Cl2) with 125I is reported. The compound was first iodinated with a large excess of iodine monochloride and then radiolabeled by isotopic exchange with Na125I in a toluene-water two-phase system. The dependence of the radiolabeling yield on the reaction temperature and exchange time was examined. The radiolabeling yield of the compound was as high as 94% after heating for 2 hours at 130 °C.  相似文献   

12.
Chlorin e6 derivative and water-soluble dyad resulting from covalent bonding of polyanionic fullerene С60 derivative to chlorin e6 derivative were synthesized and studied for spectral properties and photochemical activity. A considerable change in the absorption spectra and pronounced fluorescence quenching for the chlorin moiety included in the dyad were identified. The singlet excited state of chlorin is quenched via electron transfer from the excited chlorin to the fullerene core. A comparison of the photochemical activities of the test compounds in aqueous solutions showed a tenfold increase in the photochemical activity of the chlorin–fullerene dyad compared with free chlorin per absorbed light quantum.  相似文献   

13.
Various fullerene ions are generated in a standard plasma ion source from a vaporized mixture of C60/C70. Except C 60 + and C 70 + , the fullerene ions are formed by fragmentation of C60 or C70 excited by electron impact. Information on the structure and stability of the fullerene ions is obtained by studying unimolecular dissociation and collision-induced fragmentation of C 60 + , C 58 + and C 56 + in H2 and Ar target gases.  相似文献   

14.
[Fe(η-C5Me5)(CO)2(OH2)]+ BF4- (2a) reacts with alkenes and alkynes to give the new complexes [Fe(η-C5Me5)(CO)2(alkene)]+ BF4- and [Fe(η-C5Me5)(CO)2(alkyne)]+ BF4-. The crystal structure of the ruthenium analogue [Ru(η-C5Me5)(CO)2(OH2)]+ CF3SO3- (2b) is described.  相似文献   

15.
A novel photosynthetic‐antenna–reaction‐center model compound, comprised of BF2‐chelated dipyrromethene (BODIPY) as an energy‐harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole‐shifting agent, and phenylimidazole‐functionalized fulleropyrrolidine (C60Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy‐level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the 1ZnP* (formed either as a result of singlet–singlet energy transfer or direct excitation) or 1C60* of the coordinated fullerene resulting into the formation of the Fc–(C60 . ?Im:ZnP . +)–BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc+–(C60 . +Im:ZnP)–BODIPY radical ion pair that persisted for 7–15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60, as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long‐lived charge‐separated state with the help of the present “antenna–reaction‐center” model system has been successfully demonstrated.  相似文献   

16.
The synthesis and photochemical characterization of two porphyrin-fullerene dyads, two zinc porphyrin-fullerene dyads, and a carotenobuckminsterfullerene are reviewed. In these molecules, the fullerene first excited singlet state may be formed by direct excitation or by singlet-singlet energy transfer from the attached pigment. In polar solvents, the dominant singlet-state decay pathway is photoinduced electron transfer to yield the pigment radical cation and fullerene radical anion. This charge-separated state has a long lifetime relative to the time constant for charge separation. In toluene, in cases where photoinduced electron transfer is slow for thermodynamic reasons, the fullerene singlet state decays by intersystem crossing, and the resulting triplet energy is partitioned between the components of the dyad according to their triplet energies. The results suggest that fullerenes can be valuable components of photochemically active multicomponent molecular systems.  相似文献   

17.
王婷婷  曾和平 《化学学报》2005,63(17):1587-1594
通过1,3-偶极环加成方法在微波照射下合成了N-甲基-2-(4'-N-乙基咔唑基)-富勒烯吡咯烷(C60-Cz)和N-甲基-2- (4'-N,N-二苯基氨基)-富勒烯吡咯烷(C60-TPA), 用质谱, 1H NMR, IR等对其结构进行了表征. 用激光光解时间分辨瞬态谱研究了N-甲基-2-(4'-N-乙基咔唑基)-富勒烯吡咯烷的分子内电荷转移过程, 在近红外区观测到了长寿命电荷分离态C60•--CZ•+的存在, 其寿命为0.28 μs. 运用Gaussian 98量子化学程序包, 利用密度泛函的方法对N-甲基-2-(4'-N,N-二苯基氨基)-富勒烯吡咯烷几何构型进行了优化, 并在优化基础上用ZINDO方法计算了化合物C60-TPA的电子光谱, 计算结果表明, 光谱吸收峰在440 nm, 与实验值433 nm基本一致.  相似文献   

18.
Photosynthetic reaction centers convert excitation energy from absorbed sunlight into chemical potential energy in the form of a charge-separated state. The rates of the electron transfer reactions necessary to achieve long-lived, high-energy charge-separated states with high quantum yields are determined in part by precise control of the electronic coupling among the chromophores, donors, and acceptors and of the reaction energetics. Successful artificial photosynthetic reaction centers for solar energy conversion have similar requirements. Control of electronic coupling in particular necessitates chemical linkages between active component moieties that both mediate coupling and restrict conformational mobility so that only spatial arrangements that promote favorable coupling are populated. Toward this end, we report the synthesis, structure, and photochemical properties of an artificial reaction center containing two porphyrin electron donor moieties and a fullerene electron acceptor in a macrocyclic arrangement involving a ring of 42 atoms. The two porphyrins are closely spaced, in an arrangement reminiscent of that of the special pair in bacterial reaction centers. The molecule is produced by an unusual cyclization reaction that yields mainly a product with C(2) symmetry and trans-2 disubstitution at the fullerene. The macrocycle maintains a rigid, highly constrained structure that was determined by UV-vis spectroscopy, NMR, mass spectrometry, and molecular modeling at the semiempirical PM6 and DFT (B3LYP/6-31G**) levels. Transient absorption results for the macrocycle in 2-methyltetrahydrofuran reveal photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene to form a P(?+)-C(60)(?-)-P charge separated state with a time constant of 1.1 ps. Photoinduced electron transfer to the fullerene excited singlet state to form the same charge-separated state has a time constant of 15 ps. The charge-separated state is formed with a quantum yield of essentially unity and has a lifetime of 2.7 ns. The ultrafast charge separation coupled with charge recombination that is over 2000 times slower is consistent with a very rigid molecular structure having a small reorganization energy for electron transfer, relative to related porphyrin-fullerene molecules.  相似文献   

19.
The synthesis, complete spectroscopic characterization, cyclic voltammetry, and photophysical measurements of a new o-phenylenediamine-C(60) dyad are described. By using a tether strategy, only a single regioisomer was obtained. Cyclic voltammetry measurements indicate that the two electroactive groups do not interact in their singlet ground states. Photophysical investigations reveal a rapid photoinduced electron transfer between the singlet excited state of the fullerene acceptor and the o-phenylenediamine donor, yielding a charge-separated radical pair.  相似文献   

20.
夏文生  张达  翁维正  万惠霖 《催化学报》2013,34(11):2130-2137
采用密度泛函理论方法考察了La-O团簇上超氧物种与过氧物种间转化的连接途径. 单重态下, 团簇上单个超氧物种可通过一系列臭氧物种转化为过氧物种, 且转化能垒较高;三重态下, 单个超氧物种则并无与过氧物种间连接的途径. 然而, La-O团簇上两超氧物种间的相互作用及其转化也具单重态和三重态两条途径. 三重态下, 超氧物种可很容易地转化为过氧物种(O2- + O2-↔O22- + O2), 超氧物种与过氧物种处于快速的交换状态之中;单重态下, 超氧物种转化为过氧物种则需较高的活化能垒, 表明在单重态下这些氧物种具有较高的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号