首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chemical–mechanical polishing and high-temperature furnace annealing at temperatures ranging from 1000 °C to 1600 °C on nitrogen-doped crystalline 4H:SiC was investigated. Techniques used to characterize the samples included environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The ESEM micrographs and EDS data indicated that there were structural defects on the unannealed sample that did not propagate into the sample or vary in composition from the bulk. The sample annealed at 1000 °C showed oxygen-rich and carbon-depleted surface defects. Annealing at temperatures above 1200 °C introduced defects that grew out of the sample surface. These were carbon and oxygen rich, but depleted in silicon. This supported the XPS data, which showed an increase in the surface C bonding with annealing temperatures above 1200 °C. The XPS data also suggested that the oxycarbide content may be increasing on annealing above 1200 °C. Raman micro-probe data from the defects on the sample annealed at 1200 °C showed the maximum shift in the transverse optical phonon mode at 776 cm-1, indicating that the beginning of carbon out-diffusion may be accompanied with structural changes. Optimal annealing temperatures are thus below 1200 °C. PACS 78.20.-e; 81.05.-t; 81.70.Fy  相似文献   

2.
If an ultra high pure ZnS crystal is annealed at 1200°C and afterwards slowly or rapidly cooled down to room temperature, one obtains reversible and irreversible changes of the photoluminescence in the visible part of the spectrum. Besides two different reversible blue-green conversions, violet and orange fluorescence bands are reversibly created and annihilated. The blue-blue conversion produced by a variation of the cooling rate after annealing at 1000°C is irrecoverably destroyed if the crystal is only once warmed up to 1200°C. High temperature annealing affects luminescence and thermoluminescence in the same direction. Etching the crystals after annealing at 1000°C has no influence on the reversible behaviour of the fluorescence bands. The experimental results indicate that the structure of the deep centers in ZnS has to be discussed from a more uniform aspect.Part of thesis, Giessen 1976 (D 26)The authors wish to thank the Deutsche Forschungsgemeinschaft for support  相似文献   

3.
We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20–1200°C with 5–1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21–23-nm at 600°C and above. Precursor decomposition occurred between 20°C and 500°C. The increased mobility particle size at 700°C and above was observed to coincide with irregular particles at 700°C and 800°C and faceted particles between 900°C and 1200°C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500–1200°C and above 600°C the particles were single crystals. Indications of minor rutile formation were observed at 1200°C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal–crystal attachment points.  相似文献   

4.
Gold diffusion in silicon is investigated using Rapid Optical Annealing at temperatures in the range of 800°C to 1200°C and annealing times from 300 s down to 1 s. The resulting content of substitutional gold is determined by spreading resistance measurements and analyzed by comparison with extensive numerical simulations.The profiles obtained show a broader spectrum as compared to the U-shapes after long time diffusion. The cooling process affects the profiles significantly, since they depend on the wafer thickness. An unexpected penetration depth was found after 1200°C diffusion in thick wafers, which are subject to small cooling rates. This phenomenon is due to a special combination of reverse kick-out, deep diffusion of highly supersaturated interstitial gold, and again an incorporation in lattice sites, termed the RDI effect.Numerical calculations allow us to reproduce the experimentally observed profiles only if a sensitive balance between the different temperature dependencies is obeyed. These investigations, therefore, yield new information about the equilibrium concentration and diffusion of silicon interstitials. A best set of parameters is presented. The time constant of the kick-out process is quantified for the first time.  相似文献   

5.
Advanced surface analysis techniques: X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, have been employed in the study of heat treatment of natural corundum as ruby and sapphire. The stones were heat treated in an inert (N2) atmosphere. The setting temperatures were: 1000, 1100, 1200, 1300, 1400, 1500 and 1600 °C. The XPS studies and the parallel ToF-SIMS experiments revealed diffusion behavior of Fe and Ti in the as-mined stones as evidenced by surface observations. Both metals exhibited broad maxima in surface concentration near 1300 °C. Owing to its superlative detection limit, ToF-SIMS spectra are able to provide the temperature-dependent concentration profiles of trace transition metals such as Cr, Cu and V at a level not detectable by XPS. Visible appearance of the stones is clearly affected by heat treatment. Interestingly, the ruby stones did not exhibit cloudy inclusion (“silk”) on heating, contrary to previous experiments under atmospheric conditions.  相似文献   

6.
The transport of Na through the polycrystalline ceramic arc tube of high intensity discharge lamps has been investigated. This complex process consists of several steps: solution in the ceramics, diffusion through the ceramics, leaving the bulk phase, evaporation from the surface. Among the listed processes the kinetics of the diffusion was examined in the temperature range 400-1200 °C, separately from other disturbing effects. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to determine the concentration depth profiles. The obtained results confirmed that the grain boundary diffusion plays an important role in the transport process of sodium through the ceramic wall. The bulk and the grain boundary diffusion coefficients and the temperature dependencies of these transport processes have been determined. The activation energy of Na bulk diffusion is 56.5 ± 6.7 kJ/mol at 900-1200 °C, respectively the activation energies of Na grain boundary diffusion amount to 97.5 ± 21.6 kJ/mol in the temperature range 700-1100 °C and 7.7 ± 4.0 × 10−2 kJ/mol at 400-700 °C. The preexponential factor of the bulk diffusion was found to be Do = 5.1 × 10−15 ± 9.5 × 10−17 cm2/s in the temperature range 900-1200°C, whereas the preexponential factors of grain boundary diffusion are Do = 1.1 × 10−10 ± 1.1 × 10−11 cm2/s at 700-1100 °C and Do = 7.5 × 10-15 ± 1.5 × 10−17 cm2/s at 400-700 °C.  相似文献   

7.
In this report, YAG:Ce phosphors were synthesized by spray-drying method. The effects of annealing temperature on crystal structure, morphology and photoluminescence property (PL) of as-prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and spectrofluorometer, respectively. The XRD patterns showed all the samples are in consistence with a single garnet phase, and the location of strongest peak shifts to smaller angle with increasing the annealing temperature. The SEM micrographs revealed the sample annealed at 1200 °C appears to be a spherical polycrystalline aggregate; as the samples were annealed at 1300?1400 °C, spherical grains obviously grow up; but the sample annealed at over 1400 °C forms an irregular bulk. The emission spectra of samples indicated the PL of samples annealed at 1200?1400 °C improve with increasing the annealing temperature because of the diffusion of Si4+ ions; whereas the PL of sample annealed at the temperature over 1400 °C decreases likely resulting from inflection effects of multiangular shape of grains. Therefore, the samples annealed at 1400 °C are suitable for gaining phosphor with high brightness and good morphology.  相似文献   

8.
TaC was deposited on graphite substrate with different TaCl5 partial pressure at 800 °C and 1200 °C by chemical vapor deposition. Microstructures and texture structures of the prepared coatings were researched with X-ray diffraction and scanning electronic microscopy. When the coating deposition process is controlled by surface reaction kinetics (800 °C), TaCl5 partial pressure had little influence on the microstructure and texture structure of the coating. When the coating formation process is controlled by diffusion kinetics (1200 °C), the microstructure, texture structure of the prepared TaC grains vary greatly with TaCl5 partial pressure. In the diffusion controlled process, the increasing of TaCl5 partial pressure will result in the changing of gas supersaturation, and then the occurrence of secondary nucleation, which is the main reason for the changing of coating morphology and texture structure. With the help of competitive growth in (1 0 0) and (1 1 1) directions, the formation mechanism of the different texture coatings are discussed in detail. In addition, a diffusion model of deposition species around step-edge-corner was also proposed to explain the growth mechanism of the texture coatings.  相似文献   

9.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

10.
The authors discuss the applicability of various computational formulas to the determination of diffusion coefficients by the rotating-disk method. The aluminum-nickel system is used as an example for studying the effect of impurities in the materials investigated on the equilibrium solubility and the transfer coefficients in liquid solutions. The viscosity and diffusion coefficients are measured at 700–1250°C.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 13–18, April, 1979.  相似文献   

11.
High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.  相似文献   

12.
The study of gold and platinum diffusion is found to allow the separate observation of the intrinsic point defects, i.e., of silicon self-interstitials and of vacancies. The diffusion of gold in float zone (FZ) silicon is found to be dominated by the kick-out mechanism for temperatures of 800° C and higher. The diffusion of platinum in FZ silicon is described by the kick-out mechanism for temperatures above approximately 900° C, whereas for temperatures below approximately 850° C the dissociative mechanism governs platinum diffusion. As a result of numerical simulations, we suggest a complete and consistent set of parameters which describes the diffusion of platinum in silicon in the temperature range from 700° C to 950° C and the diffusion of gold in the temperature range from 800° C to 1100° C. The generation or recombination of self-interstitials and vacancies is found to be ineffective at least below 850° C. The concentration of substitutional platinum is determined by the initial concentration of vacancies at diffusion temperatures below 850° C. Platinum diffusion below 850°C can be used to measure vacancy distributions in silicon quantitatively.  相似文献   

13.
Fokine M 《Optics letters》2002,27(12):1016-1018
A model based on diffusion of dopants in a periodic structure has been applied to describe thermal decay of chemical composition gratings in fluorine-germanium-doped silica fibers. The good agreement between previously reported values and the diffusion coefficients derived here from experiments and models in the 1000-1200 degrees C temperature range indicate that fluorine diffusion is the main mechanism of grating decay. Experimental results also indicate that the presence of phosphorous significantly increases the decay rate of chemical composition gratings.  相似文献   

14.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

15.
High purity Fe2O3/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 °C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe2O3/ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe2O4. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe2O3/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 °C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 °C, suggesting that it is not related with the interfacial defects.  相似文献   

16.
Rapid Thermal oxidation (RTO) of silicon has been investigated in the temperature range 1000° to 1250°C for an oxidation time of 5 to 60 s. The fairly extensive kinetics data show that linear growth occurs with an activation energyE a of 1.4 eV. Rapid thermal nitridation of SiO2 (96 Å) has been performed at three different temperatures: 1150°, 1200°, and 1250°C for a nitridation time up to 150 s. The characteristics of both materials have been investigated by capacitance-voltage, current-voltage, high resolution transmission electron microscopy and Auger spectroscopy. The results will be discussed with special emphasis on breakdown field statistics. The influence of Rapid Thermal Annealing (RTA) on the characteristics of both oxide and nitrided oxide will also be presented. A simulation model of a rapid thermal processing machine is presented with particular attention to the formation of slip lines. The theoretical results are in good agreement with those obtained experimentally.  相似文献   

17.
The influence of annealing on the lifetime of minority carriers has been investigated in a temperature range from 600 °C to 1200 °C. The annealing introduces the recombiation and trapping centres into Si. The process of recombination can be explained on a two-level model where one level acts as a recombination one and the other acts either as a recombination or as a trapping level, depending on the Fermi level position. The ways of preventing the diffusion of impurities from the surface into Si material were sought because this diffusion is the main cause of variations of due to annealing.  相似文献   

18.
We directly investigated the chemical compositional origin of surface roughness variations in air-annealed ZnO single crystal samples for annealing temperatures up to 1000 °C. Atomic Force Microscopy (AFM) showed temperature-dependent changes in surface roughness and morphology, with a maximum in surface roughness of 2 nm found for samples annealed at 400 °C. The O(1s) line, measured by X-ray Photoelectron Spectroscopy (XPS) showed a maximum for Zn(OH)2 and a minimum for off-stoichiometric ZnO at 400 °C; while the Zn(2p) peaks show an increase in slope at that temperature. These results indicate that the roughness arises from Zn diffusion and loss of surface oxygen.  相似文献   

19.
Mong Hsu rubies have been heat treated in air at 1100, 1200, 1300, 1400, 1500 and 1600 °C. Their visual appearance and surface analysis (XPS) after each stage of heating have been monitored. The characteristic blue core regions of untreated ruby become slightly faded at 1100 °C and completely disappear at temperatures above 1500 °C. Trace amounts of Na, Ca, Si and Fe were found on the surface of untreated stones. Ti was first detected after heating to 1100 °C. Plots of detected surface concentrations of elements versus temperature show that the highest concentration of Fe occurred at 1300 °C while surface concentrations of Ti appeared to show two maxima near 1300 and 1500 °C. The results suggest that both the changing oxidation state of Fe2+ to Fe3+ and the diffusion of the Fe and Ti ions with temperature are responsible for the color changes through decreasing Fe2+ to Ti4+ charge transfer.  相似文献   

20.
The behavior of hydrogen in zirconium hydride in the high-temperature range has been investigated using the quantum molecular dynamics method. The δ phases of compositions ZrH1.75 and ZrH2 and the liquid phase are considered. The self-diffusion coefficients of hydrogen are calculated as a function of the temperature in the range from 1000 to 6000 K. For the ZrH1.75 and ZrH2 hydrides, the obtained values are close to each other. At temperatures of 1000–2000 K, the hydrogen diffusion is determined not only by the mobility of hydrogen atoms but also by the transition from the energetically favorable tetrahedral positions into the excited state. The obtained values of the diffusion coefficients in the temperature range of 1000–1200 K are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号