首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper, a finite element formulation is defined in the framework of the discontinuous Galerkin method. Discontinuous Galerkin (dG) methods are classically used in fluid mechanics, however recently their application in solid mechanics has become more vivid among scientists. Of special interest is their application in elliptic problems with constraints such as incompressibility which leads to volumetric locking phenomenon and also in some structural models of shells, plates and beams with compatibility constraints, which brings about shear locking [1]. While classical standard Galerkin methods must be continuous, dG methods can be applied for discontinuities across element boundaries, where a jump of a value (displacement) can be observed. In the present work, a dG method is applied to a linear elastic bar, where a weak discontinuity is allowed in the bar. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
离散系统运动方程的Galerkin有限元EEP法自适应求解   总被引:2,自引:1,他引:1       下载免费PDF全文
对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误差,并自动细分网格,目前已对诸类以空间坐标为自变量的边值问题取得成功.对离散系统运动方程建立弱型Galerkin有限元解,引入基于EEP法的自适应求解策略,在时间域上自动划分网格,最终得到所求时域内任一时刻均满足给定误差限的动位移解,进而建立了一种时间域上的新型自适应求解算法.  相似文献   

3.
This paper presents an innovative approach for analysing three-dimensional flat rolling. The proposed approach is based on a solution resulting from the combination of the finite element method with the boundary element method. The finite element method is used to perform the rigid–plastic numerical modelling of the workpiece allowing the estimation of the roll separating force, rolling torque and contact pressure along the surface of the rolls. The boundary element method is applied for computing the elastic deformation of the rolls. The combination of the two numerical methods is made using the finite element solution of the contact pressure along the surface of the rolls to define the boundary conditions to be applied on the elastic analysis of the rolls. The validity of the proposed approach is discussed by comparing the theoretical predictions with experimental data found in the literature.  相似文献   

4.
An integral equation formulation for finite deflection analysis of thin elastic plates is presented, based on general nonlinear differential equations which are equivalent to the von Kármán equations and by virtue of generalized Green identities. Boundary element discretization is applied and a relaxation iterative approach is employed to solve the nonlinear plate bending problems. A number of numerical examples are given; the results of computation are compared with the analytical solutions and good agreement is observed. It appears that the approach developed in this paper is effective.  相似文献   

5.
Since the intrinsic limitations of FEM (Finite element method) and lumped-mass method, we derive the formula of 8-node hexahedral element based on VFIFE (vector form intrinsic finite element method) method and applied it in contact analysis of gears. This paper proposed a new method to determine pure nodal deformation, which could simplify the computation compared to the traditional VFIFE method. Combining the VFIFE method and matching contact algorithm, we analyzed spiral bevel gear meshing problems. Spiral bevel models with two different mesh densities are calculated analyzed by the VFIFE method and FEM. Performance indicators of gears are extracted and compared, including contact forces, contact and bending stresses, contact stress patterns and loaded transmission errors. The results show that the VFIFE method has a stable performance and reliable accuracy under coarse or refined mesh conditions, while the FEM inaccurately calculates the contact stress of the coarse mesh model. The examples demonstrate that the proposed method could precisely analyze gear meshing problems with a coarse mesh model, which provides a new solution for gear mechanics.  相似文献   

6.
不同模量横力弯曲梁的解析解   总被引:13,自引:0,他引:13  
选择处于平面复杂应力状态下横力弯曲梁,对结构进行了中性层的判定,推导出中性轴、正应力、剪应力、位移的计算公式,得到如下结论:对于复杂应力状态下的不同模量弹性弯曲梁,其中性轴位置与剪应力无关,因此用正应力作为判据而得到解析解,改进了以往用主应力判定中性点的多次循环的计算方法.把解析解的结果与经典力学同模量理论,以及有限元数值解进行了比较,结果表明:解析解很好地考虑了拉压不同模量的效应.还提出了对不同模量结构的计算修正以及对结构优化的思想.  相似文献   

7.
A model is presented for calculating the linear elastic constants of high-porosity cellular plastics by orientationally averaging the rigidity tensor of a structural element consisting of an air sheath and a loadcarrying element in the form of a straight strut with a piecewise constant cross section. The load-carrying element can resist the axial and shear loads and bending moments applied to its ends. The nonuniform orientational distribution of the elements is also taken into account. The calculation results obtained are compared with some literature data.  相似文献   

8.
In this paper, distributions of stress and strain components of rotating disks with non-uniform thickness and material properties subjected to thermo-elasto-plastic loading are obtained by semi-exact method of Liao’s homotopy analysis method (HAM) and finite element method (FEM). The materials are assumed to be elastic-linear strain hardening and isotropic. The analysis of rotating disk is based on Von Mises’ yield criterion. A two dimensional plane stress analysis is used. The distribution of temperature is assumed to have power forms with the hotter point located at the outer surface of the disk. A mathematical technique of transformation has been proposed to solve the homotopy equations which are originally hard to be handled. The domain of the solution has been substituted by a new domain through which the unknown variable has been taken out from the argument of the function. This makes the solution much easier. A numerical solution of the governing differential equations is also presented based on the Runge–Kutta’s method. The results of three methods are presented and compared which shows good agreements. This verifies the implementation of the HAM and demonstrates its applicability to provide accurate solution for a very complicated case of strongly high nonlinear differential equations with no exact solution. It is important to notice that compared with other methods, HAM needs significant more computation time and computer hardware requirements which limit its application for those problems that other methods can easily handle them.  相似文献   

9.
王军平  叶秀  张然 《计算数学》2016,38(3):289-308
本文简述弱有限元方法(weak Galerkin finite element met,hods)的数学基本原理和计算机实现.弱有限元方法对间断函数引入广义弱微分,并将其应用于偏微分方程相应的变分形式进行数值求解,而数值解的弱连续性则通过稳定子或光滑子来实现.弱有限元方法针对广义函数而构建,是经典有限元方法的一种自然拓广,且能够弥补经典有限元方法的某些缺憾,也因此在科学与工程计算领域具有广泛的应用前景.  相似文献   

10.
Optimal design with respect to the variable thickness of an elastic beam with unilateral supports under the criterion of minimal value of the maximal stress is presented in Part I. A dual formulation of the state problem (in terms of bending moments) is used and the convergence of some approximations proved.In Part III the variable thickness of an elastic or elasto-plastic plate unilaterally supported on a part of its edge is optimized. For elastic plates with parallel edges a primal finite element model is applied and a convergence result obtained.  相似文献   

11.
Two or more physical systems frequently interact with each other, where the independent solution of one system is impossible without a simultaneous solution of the others. An obvious coupled system is that of a dynamic fluid-structure interaction. [8] In this paper a computational analysis of the fluid-structure interaction in a mixing vessel is presented. In mixing vessels the fluid can have a significant influence on the deformation of blades during mixing, depending on speed of mixing blades and fluid viscosity. For this purpose a computational weakly coupled analysis has been performed to determine the multiphase fluid influences on the mixing vessel structure. The multiphase fluid field in the mixing vessel was first analyzed with the computational fluid dynamics (CFD) code CFX. The results in the form of pressure were then applied to the blade model, which was the analysed with the structural code MSC.visualNastran forWindows, which is based on the finite element method (FEM). (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The technique developed in refs. [1-5] is applied to the problem of a concentrated line force acting in the interior of an infinite plate. The plate is of arbitrary thickness, is isotropic, but is inhomogeneous in that the elastic moduli are any specified functions, not necessarily continuous, of the through-thickness coordinate. The mechanical properties of the plate are not necessarily symmetric about the mid-surface. The solution is based on the classical solution for a concentrated force in a thin elastic plate. This classical solution is extended to give exact closed form solutions for the displacement and stress in the thick inhomogeneous plate. For a plate that is not symmetric an in-plane force gives rise to bending as well as stretching deformations. Higher order force singularities are also considered, as is the problem of a concentrated force on the boundary of a semi-infinite symmetric plate.  相似文献   

13.
Research interest in the mechanical behaviour of soils is growing as a result of an increasing number of geomechanical problems involving consolidation effects. The main aim of this paper is to validate and to solve a model for consolidation of an elastic saturated soil with incompressible fluid and variable permeability. Firstly, we prove the existence and uniqueness of the solution of the variational problem corresponding to an initial and boundary value problem (IBVP): a special case of the Biot’s ‘consolidation of clay’ model (where the applied forces depend on time). Secondly, we prove the convergence of the method using a technique based on the proof of solution’s existence. Finally, we then solved this constitutive model by the finite element method (FEM) employing repeated fixed point techniques in order to obtain the results for displacement and pore water pressure. The pore fluid is considered incompressible. The results of the numerical experiments are compared with analytical solutions and, in cases where such solutions do not exist, with experimental data. Therefore, the model can be used for quantitative predictions of consolidation behaviour of soils with permeability dependent on the settlement.  相似文献   

14.
An approximate model of the linear bending of an orthotropic sandwich plate is proposed, taking into account the excess pressure in the space of the filling and the difference in the areas of the surfaces of the elastically curved supporting layers, and the dependence of the shear modulus of the filling on the pressure is postulated. The bending equations of the plate are also given, taking into account the external excess pressure. The value of the transverse distributed force acting on the plate due to the excess pressure in the space of the middle layer and the curvature of the elastic line is obtained. It is shown that this pressure leads to an increase in the bending. If the space of the filling is closed, so that stretching forces due to the pressure act on the boundary sections, the bending is independent of the pressure drop. The dependence of the distributed transverse force on the external pressure is derived. The change in the shear modulus of the filling as a function of the external pressure drop is also considered.  相似文献   

15.
A. Lotfi  B. Kiss 《PAMM》2002,1(1):157-158
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

16.
In this paper,the boundary stabiligstion of tbe Timoshenko equation of a nononiform beam,with clarrmped boundary condition at one end and witb bending moment and shear force controls at the other end, is considered. It is proved that the system is exponentially stahilizable when the bending moment and shear force controls are simultaneously appiied. The frequency domain method and the multiplier technique are used.  相似文献   

17.
In this paper,the boundary stabilization of the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with bending moment and shear force controls at the other end,is considered.It is proved that the system is exponentially stabilizable when the bending moment and shear force controls are simultaneously applied.The frequency domain method and the multiplier technique are used.  相似文献   

18.
This article analyzes the error in both the bilinear and linear immersed finite element (IFE) solutions for second‐order elliptic boundary problems with discontinuous coefficients. The discontinuity in the coefficients is supposed to happen across general curves, but the mesh of the IFE methods can be allowed not to align with the curve of discontinuity. It has been shown that the bilinear and linear IFE solutions converge to the exact solution under the usual assumptions about the meshes and regularity.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 312–330 2012  相似文献   

19.
A. Lotfi  B. Kiss 《PAMM》2003,2(1):242-243
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method. The global problem is transformed to a smaller problem on the contact surface. The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure.  相似文献   

20.
A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this paper to solve the free vibration and buckling problems of plates based on Reissner–Mindlin theory. By aid of the high accuracy of B-spline functions approximation for structural analysis, the proposed method could obtain a fast convergence and a satisfying numerical accuracy with fewer degrees of freedoms (DOF). The numerical examples demonstrate that the present BSWI method achieves the high accuracy compared to the exact solution and others existing approaches in the literatures. The BSWI finite element has potential to be used as a numerical method in analysis and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号