共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics Reports》2005,409(2):47-99
The use of Raman spectroscopy to reveal the remarkable structure and the unusual electronic and phonon properties of single wall carbon nanotubes (SWNTs) is reviewed comprehensively. The various types of Raman scattering processes relevant to carbon nanotubes are reviewed, and the theoretical foundations for these topics are presented. The most common experimental techniques used to probe carbon nanotubes are summarized, followed by a review of the novel experimental findings for each of the features in the first order and second order Raman spectra for single wall carbon nanotubes. These results are presented and discussed in connection with theoretical considerations. Raman spectra for bundles of SWNTs, for SWNTs surrounded by various common wrapping agents, and for isolated SWNTs at the single nanotube level are reviewed. Some of the current research challenges facing the field are briefly summarized. 相似文献
2.
We use 488 and 568 nm laser Raman spectroscopy under high pressure to selectively follow evolution of Raman G-mode signals of single-walled carbon nanotubes (SWCNTs) of selected diameters and chiralities ((6, 5) and (6, 4)). The G-mode pressure coefficients of tubes from our previous work are consistent with the thick-wall tube model. Here we report the observation of well-resolved G-minus peaks in the Raman spectrum of SWCNTs in a diamond-anvil cell. The pressure coefficients of these identified tubes in water, however, are unexpected, having the high value of over 9 cm?1 GPa?1 for the G-plus and the G-minus, and surprisingly the shift rates of the same tubes in hexane have clearly lower values. We also report an abrupt increase of G-minus peak width at about 4 GPa superposed on a continuous peak broadening with pressure. 相似文献
3.
Qiaohuan Cheng Sourabhi Debnath Elizabeth Gregan Hugh J. Byrne 《Applied Physics A: Materials Science & Processing》2011,102(2):309-317
This study establishes a generic fitting approach to assignment of nanotube chiralities based on radial breathing mode frequencies
(ω
RBM) of SWCNTs in as-produced bundles. Four laser lines with energies of 2.62 eV, 2.33 eV, 1.88 eV and 1.58 eV were employed.
The observed RBM frequencies, ω
RBM, were plotted as a function of the possible diameters, d, as identified from the so-called Kataura plot and reported values of the parameters A and B, where ω
RBM=A/d+B, assuming that SWCNTs resonant at the respective laser frequencies dominate the spectrum. The refined values of A and B, obtained by the best fit of a linear regression between ω
RBM and 1/d, were found to vary significantly for different laser frequencies. This variation is interpreted in terms of the differences
in electronic properties of SWCNTs resonant at different frequencies. The assigned nanotubes match well with those identified
in the Kataura plot, falling within a resonant line width of ±0.2 eV of the respective laser lines. 相似文献
4.
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency, and the Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n(1),n(2)) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega(RBM)=(214.4+/-2) cm(-1) nm/d+(18.7+/-2) cm(-1). In contrast to luminescence experiments we observe all chiralities including zigzag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab initio calculations. 相似文献
5.
This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends. 相似文献
6.
John E. Proctor Matthew P. Halsall David J. Dunstan 《Journal of Physics and Chemistry of Solids》2006,67(12):2468-2472
The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent-nanotube interaction is more complex than previously thought. 相似文献
7.
We present Raman scattering on carbon nanotubes functionalized with pentyl groups. Studies of the intermediate frequency region and the C–H bond stretching signal along with the D mode show evidence of the addition reaction by Raman spectroscopy. From the resonance profiles of the radial breathing mode (RBM) we assign the chiral indices of the tubes and study the influence of the functionalization on the transition energies, shift and intensity of the RBM signal. The largest effect we observe is on the Raman intensity of the radial breathing mode. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
8.
Z. H. Ni H. M. Fan X. F. Fan H. M. Wang Z. Zheng Y. P. Feng Y. H. Wu Z. X. Shen 《Journal of Raman spectroscopy : JRS》2007,38(11):1449-1453
High temperature Raman experiments were carried out on carbon nanowalls (CNWs). The intensity of the defect‐induced D mode decreased significantly after the sample was heated in air ambient. The Raman intensity ratio of D mode and G mode, ID/IG, changed from 2.3 at room temperature to 1.95 after the sample was heated to 600 °C. This change was attributed to the removal of surface amorphous carbon by oxidation. In contrast to ID/IG, the intensity ratio of the D′ mode and the G mode, ID′/IG, did not change much after heating, indicating that the surface amorphous carbon and surface impurity do not contribute as much to the intensity of the D′ mode. The dominant contributor to the D′ mode could be the intrinsic defects. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes 总被引:5,自引:0,他引:5
Kneipp K Kneipp H Corio P Brown SD Shafer K Motz J Perelman LT Hanlon EB Marucci A Dresselhaus G Dresselhaus MS 《Physical review letters》2000,84(15):3470-3473
Surface enhancement factors of at least 10(12) for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions. 相似文献
10.
Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects 下载免费PDF全文
Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate. 相似文献
11.
12.
Wang F Liu W Wu Y Sfeir MY Huang L Hone J O'Brien S Brus LE Heinz TF Shen YR 《Physical review letters》2007,98(4):047402
Combinations of up to 6 zone-edge and zone-center optical phonons are observed in the Raman spectra of individual single-walled carbon nanotubes (SWNTs). These multiphonon Raman modes exhibit distinct signatures of the one-dimensional nature of SWNTs and provide information on the phonon structure, exciton-phonon coupling, and excitonic transitions in nanotubes. 相似文献
13.
The role of irradiation induced defects and temperature in the conducting properties of single-walled (10, 10) carbon nanotubes has been analyzed by means of a first-principles approach. We find that divacancies modify strongly the energy dependence of the differential conductance, reducing also the number of contributing channels from two (ideal) to one. A small number of divacancies (5-9) brings up strong Anderson localization effects and a seemly universal curve for the resistance as a function of the number of defects. It is also shown that low temperatures, about 15-65 K, are enough to smooth out the fluctuations of the conductance without destroying the exponential dependence of the resistivity as a function of the tube length. 相似文献
14.
Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy 下载免费PDF全文
Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nan- otubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice. 相似文献
15.
X.Y. Dou Z.P. Zhou P.H. Tan L. Song L.F. Liu X.W. Zhao S.D. Luo X.Q. Yan D.F. Liu J.X. Wang Y. Gao Z.X. Zhang H.J. Yuan W.Y. Zhou S.S. Xie 《Physica E: Low-dimensional Systems and Nanostructures》2005,27(4):469-473
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results. 相似文献
16.
We performed ab initio calculations of the anisotropic dielectric response of small-diameter single-walled carbon nanotubes in the framework of time-dependent density-functional theory. The calculated optical spectra are in very good agreement with experiment, both concerning absolute peak positions and anisotropy effects. The latter can only be described correctly when crystal local-field effects ("depolarization" effects) are fully taken into account. Moreover, interactions between the tubes can strongly modify their absorption and electron energy-loss spectra. 相似文献
17.
L. Alvarez T. Guillard J.L. Sauvajol G. Flamant D. Laplaze 《Applied Physics A: Materials Science & Processing》2000,70(2):169-173
We report here some studies of the growth mechanisms of single-wall carbon nanotubes (SWNTs) produced by the solar method as a function of the experimental conditions and the nature of catalysts. A large set of transmission electron microscopy (TEM) pictures seems to confirm the existence of one dominant growth mechanism, close to the model proposed by Saito et al., whatever the used catalyst might be. Nevertheless, the Raman spectra clearly show that the change of catalyst induces differences in diameter, structure, and electronic properties of SWNTs. 相似文献
18.
We present the study of DNA-wrapped single-walled carbon nanotubes (SWNTs) embedded in the stretched gelatin film by the polarized resonance Raman spectroscopy and visible-NIR optical absorption. The polarized dependent absorption spectra taken along and normal to the stretching direction demonstrate a comparatively high degree of the alignment of isolated SWNTs in the gelatin matrix. The analysis of Raman spectra of isolated SWNTs in the gelatin stretched films showed that the degree of the alignment of carbon nanotubes along the stretching direction is about 62%. The dependence of the peak position of G+-band in Raman spectra on the polarization angle θ between the polarization of the incident light and the direction of the stretching of films was revealed. This shift is explained by the different polarization dependence of the most intensive A and E1 symmetry modes within the G+-band. The performed studies of embedded DNA-wrapped nanotubes in the gelatin film show the simple method for obtaining the controlled ordered biocompatible nanotubes inside a polymer matrix. It can be used for manufacturing sizable flexible self-transparent films with integrated nanoelectrodes. 相似文献
19.
Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering 总被引:6,自引:0,他引:6
Jorio A Saito R Hafner JH Lieber CM Hunter M McClure T Dresselhaus G Dresselhaus MS 《Physical review letters》2001,86(6):1118-1121
We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface. 相似文献
20.
提出一个根据拉曼基频模及其倍频模的斯托克斯和反斯托克斯拉曼成分的不同共振行为来探测样品与激光共振的系统能级的方法.此方法被应用到不均匀单壁碳纳米管束样品中某一径向呼吸模频率为219波数的金属型碳纳米管.通过分析呼吸模及其倍频模和切向模的共振行为,获得了该碳纳米管的电子跃迁能量,并获得纳米管C-C最近邻重叠积分因子为2.80 eV.此数值可以很好的解释单壁碳纳米管径向呼吸模的共振行为.
关键词:
单壁碳纳米管
呼吸模
共振拉曼散射
电子跃迁能 相似文献