首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double wall carbon nanotubes were prepared by vacuum annealing of single wall carbon nanotubes filled with C60. Strong evidence is provided for a highly defect free and unperturbed environment in the interior of the tubes. This is concluded from unusual narrow Raman lines for the radial breathing mode of the inner tubes. Lorentzian linewidths scale down to 0.35 cm(-1) which is almost 10 times smaller than linewidths reported so far for this mode. A splitting is observed for the majority of the Raman lines. It is considered to originate from tube-tube interaction between one inner tube and several different outer tubes. The highest RBM frequency detected is 484 cm(-1) corresponding to a tube diameter of only 0.50 nm. Labeling of the Raman lines with the folding vector is provided for all inner tubes. This labeling is supported by density functional calculations.  相似文献   

2.
We present excitation-energy dependent Raman measurements between 2.05 and 2.41 eV on the same individual carbon nanotube. We find a change in the Raman frequencies of both the D mode (63 cm(-1)/eV) and the high-energy modes. The observed frequencies of the modes at approximately 1600 cm(-1) as a function of laser-energy map the phonon dispersion relation of a metallic tube near the Gamma point of the Brillouin zone. Our results prove the entire first-order Raman spectrum in single-wall carbon nanotubes to originate from double-resonant scattering. Moreover, we confirm experimentally the phonon softening in metallic tubes by a Peierls-like mechanism.  相似文献   

3.
In this Letter, we report the effects of strain on the electronic properties of single-wall carbon nanotubes. When we normalize the electronic transition energies to the corresponding values obtained for unstrained tubes, we obtain that, regardless of the tube diameter, all the data collapse onto universal curves following an n - m = constant family pattern. In the case of metallic tubes, quantum interference effects on the Raman cross section are predicted for strained tubes when the energies of the lower and the upper components have nearly the same values. Experimental evidence for the strain-induced Raman cross section changes is observed in single nanotube spectroscopy.  相似文献   

4.
In situ Raman experiments together with transport measurements have been carried out on carbon nanotubes as a function of gate voltage. In metallic tubes, a large increase in the Raman frequency of the G(-) band, accompanied by a substantial decrease of its linewidth, is observed with electron or hole doping. In addition, we see an increase in the Raman frequency of the G(+) band in semiconducting tubes. These results are quantitatively explained using ab initio calculations that take into account effects beyond the adiabatic approximation. Our results imply that Raman spectroscopy can be used as an accurate measure of the doping of both metallic and semiconducting nanotubes.  相似文献   

5.
We have measured the Raman spectrum of individual single walled carbon nanotubes in solution and compare it to that obtained from the same starting material where the tubes are present in ordered bundles or ropes. Interestingly, the radial mode frequencies for the tubes in solution are found to be approximately 10 cm (-1) higher than those observed for tubes in a rope, in apparent contradiction to lattice dynamics predictions. We suggest that there is no such contradiction, and propose that the upshift is due rather to a decreased energy spacing of the Van Hove singularities in isolated tubes over the spacings in a rope, thereby allowing the same laser excitation to excite different diameter tubes in these two samples.  相似文献   

6.
Using electron diffraction on freestanding single-walled carbon nanotubes, we have determined the structural indices (n,m) of tubes in the diameter range from 1.4 to 3 nm. On the same freestanding tubes, we have recorded Raman spectra of the tangential modes and the radial breathing mode. For the smaller diameters (1.4-1.7 nm), these measurements confirm previously established radial breathing mode frequency versus diameter relations and would be consistent with the theoretically predicted proportionality to the inverse diameter. However, for extending the relation to larger diameters, either a yet unexplained environmental constant has to be assumed, or the linear relation has to be abandoned.  相似文献   

7.
We report that measurements of the Raman intensity versus applied voltage are sensitive to filling of the density of states and enable us to measure the second band gap in specific semiconducting single-walled carbon nanotubes (SWNTs). Raman scattering preferentially selects sets of SWNTs whose excitonic transitions are resonant with the incident or scattered photon energies. Simultaneous measurement of the electronic gap and exciton resonance allows us to infer binding energies for the exciton of 0.49+/-0.05 and 0.62+/-0.05 eV for tubes of (10, 3) and (7, 5), respectively. Metallic SWNTs exhibit no excitonic feature.  相似文献   

8.
In this paper, we report on Raman studies carried out on different carbon nanotube systems, namely single-walled and multi-walled carbon nanotubes and polymer/nanotube composites. We focus on different types of interactions which can take place in these materials. In single-walled nanotubes, the introduction of van der Waals interactions between tubes when arranged in bundles leads to an upshift of the radial breathing mode (RBM) ranging from 11 to 16 cm−1 depending on the size of the bundle. In multi-walled carbon nanotubes, similar interactions between concentric tubes permit to interpret the low frequency Raman modes. In composites, PMMA/nanotubes, an upshift of the RBM is also observed, explained by the dynamical strain applied by the polymer on the bundles, in response to the breathing vibration. In addition, surface enhanced Raman scattering experiments have demonstrated the occurrence of interfacial reactions between the nanotubes and the metallic support. This is put in evidence by the degradation of tubes, especially metallic ones, and reconstruction of C60-like molecules are in some cases observed.  相似文献   

9.
碳纳米管及其H_2吸附体系的Raman光谱   总被引:1,自引:0,他引:1  
利用紫外Raman光谱技术 ,对分别以CO和CH4为碳源、由化学催化法制备的两种多壁碳纳米管以及它们的H2 吸附体系进行Raman光谱表征 ,观测到可分别归属于类石墨结构的基频模G (1 5 80cm- 1 )和D (1 41 6cm- 1 ,缺陷诱导 ) ,以及它们的二阶和三阶组合频 2D(2 83 2cm- 1 ) ,D +G (2 996cm- 1 ) ,2G (3 1 6 0cm- 1 )和 2D +G (441 2cm- 1 )的Raman峰 ;H2在这些多壁碳纳米管上吸附有两种形式 :非解离吸附分子氢H2 (a)和解离吸附生成含氢表面物种CHX(x =3 ,2 ,1 ) ,所观测在 2 85 0 ,2 96 7和 3 95 0cm- 1 处的Raman谱峰可分别归属于表面CH2 基的对称C -H伸缩模 ,CH3基的不对称C -H伸缩模 ,以及吸附态分子氢H2 (a)的H -H伸缩模  相似文献   

10.
Polarization-resolved Raman scattering measurements were performed on MgB(2) single crystals to determine the magnitude, symmetry, and temperature dependence of the superconducting gap. A single sharp peak due to Cooper pair breaking appears in the electronic continuum below T(c), reaching a maximum Raman shift of 105 +/- 1 cm(-1) [2 Delta(0)/k(B)T(c) = 3.96 +/- 0.09] and showing up to 5 cm(-1) anisotropy between polarized and depolarized spectra. The temperature dependence of 2 Delta follows that predicted from BCS theory, while the anisotropy decreases with decreasing temperature. It is concluded that the Raman results are consistent with a slightly anisotropic s-wave gap in a conventional BCS superconductor.  相似文献   

11.
We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.  相似文献   

12.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm(-1) to 110 cm(-1)) is observed as a function of the nanotube's chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.  相似文献   

13.
Polarized Raman spectra were obtained from a rope of aligned semiconducting single-wall nanotubes (SWNTs) in the vicinity of the D band and the G band. Based on group theory analysis and related theoretical predictions, the G-band profile was deconvolved into four intrinsic SWNT components with the following symmetry assignments: 1549 cm(-1) [E2(E(2g))], 1567 cm(-1) [A(A(1g))+E1(E(1g))], 1590 cm(-1) [A(A(1g))+E1(E(1g))] and 1607 cm(-1) [E2(E(2g))]. The frequency shifts of the tangential G modes from the 2D graphitelike E(2g(2)) frequency are discussed in terms of the nanotube geometry.  相似文献   

14.
欧阳雨  方炎 《光散射学报》2003,15(3):139-142
对不同激发波长下单壁和多壁碳纳米管的激光拉曼光谱进行了比较。发现单壁碳纳米管D峰强度和G峰强度的比值(ID/IG)几乎不随激发光子能量的改变而变化,多壁碳纳米管ID/IG值随着激发光子能量的增加以斜率0 3/eV减小。并对此现象进行了初步的分析。此外,还发现在1064nm激发波长下,单壁和多壁碳纳米管2500-3500cm-1之间拉曼峰的相对强度随着入射激光功率的增加而增加。  相似文献   

15.
We report here the results of the first resonance Raman study on single MoS2 and WS2 nanotubes and microtubes synthesized by chemical transport reaction. These multiwall tubes represent the longest known inorganic nanotubes grown up to several millimetre lengths with diameters ranging from less than ten nanometers to several micrometers. The nanotubes grown at nearly equilibrium conditions contain extremely low density of structural defects. The selected area diffraction on the thick-wall nanotubes revealing the rhombohedral (3R) stacking, otherwise stable at elevated pressure above 4 GPa, provides indirect evidence of the presence of strain incorporated into the nanotube wall. Results are compared with phonon spectra of plate-like crystals of the same compound. The observed up-shift of Raman peaks in the tubes spectra is explained by the presence of strain. Well preserved crystal structure of tubes is confirmed by comparison with phonon spectra of nanostructured materials from literature.  相似文献   

16.
利用相干反斯托克斯拉曼光谱(coherent anti-stokes Raman spectroscopy,CARS)探测技术,研究了激发态Rb2与H<,2>间的电子-振转能级的碰撞转移.扫描CARS谱确认了H<,2>分子仅在v=1,J=1,2及v=2,J=0,1,2能级上有布居,用n1,n2,n3,n4,n5分别表示...  相似文献   

17.
王艳丽  张军平  苏克和  王欣  刘艳  孙旭 《中国物理 B》2012,21(6):60301-060301
Armchair(n,n) single walled boron nitride nanotubes with n = 2-17 are studied by the density functional theory at the B3LYP/3-21G(d) level combined with the periodic boundary conditions for simulating the ultra long model.The results show that the structure parameters and the formation energies bear a strong relationship to n.The fitted analytical equations are developed with correlation coefficients larger than 0.999.The energy gaps of(2,2) and(3,3) tubes are indirect gaps,and the larger tubes(n = 4-17) have direct energy gaps.Results show that the armchair boron nitride nanotubes(n = 2-17) are insulators with wide energy gaps of between 5.93 eV and 6.23 eV.  相似文献   

18.
We use 488 and 568 nm laser Raman spectroscopy under high pressure to selectively follow evolution of Raman G-mode signals of single-walled carbon nanotubes (SWCNTs) of selected diameters and chiralities ((6, 5) and (6, 4)). The G-mode pressure coefficients of tubes from our previous work are consistent with the thick-wall tube model. Here we report the observation of well-resolved G-minus peaks in the Raman spectrum of SWCNTs in a diamond-anvil cell. The pressure coefficients of these identified tubes in water, however, are unexpected, having the high value of over 9 cm?1 GPa?1 for the G-plus and the G-minus, and surprisingly the shift rates of the same tubes in hexane have clearly lower values. We also report an abrupt increase of G-minus peak width at about 4 GPa superposed on a continuous peak broadening with pressure.  相似文献   

19.
We report a steady-state Raman gain measurement of the Q(1)(0) transition (v = 1 ? 0, J = 0 ? 0) in solid parahydrogen. We carry out measurements by pumping with a continuous-wave frequency-doubled YAG laser at 532 nm and observing the direct amplification of a probe-laser beam for the first Stokes transition at 683 nm. A large single-pass amplification coefficient of 2.3 +/- 0.2 is obtained at a pump intensity of 46 kW/cm(2), with an interaction length of 1 cm, giving a steady-state Raman gain coefficient of 18 +/- 3 cm/MW.  相似文献   

20.
高温下单壁碳纳米管的拉曼光谱研究   总被引:3,自引:3,他引:0  
本文采用对样品进行直接加热和测温的方法,对单壁碳纳米管(SWNT)高温下的拉曼光谱进行了研究。在不同的激发波长下,观测了SWNT拉曼光谱的切向振动模频率随温度的变化,发现其频率随温度增加而降低,基本呈线性变化,温度系数约-0.014cm-1/K。不同的激发波长下,切向振动模频率随温度的变化行为基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号