首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the arrival time distribution defined through the quantum probability current for a Gaussian wave packet representing free particles in quantum mechanics in order to explore the issue of the classical limit of arrival time. We formulate the classical analogue of the arrival time distribution for an ensemble of free particles represented by a phase space distribution function evolving under the classical Liouville's equation. The classical probability current so constructed matches with the quantum probability current in the limit of minimum uncertainty. Further, it is possible to show in general that smooth transitions from the quantum mechanical probability current and the mean arrival time to their respective classical values are obtained in the limit of large mass of the particles.  相似文献   

2.
We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem, as a warm up, to deal with the problem of time in reparametrization invariant theories (as for example in canonical quantum gravity) which subsequently we examine. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related to our results, is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem and the problem of time in general.  相似文献   

3.
We study the all-optical time?control of the strong coupling between a single cascade three-level quantum emitter and a microcavity. We find that only specific arrival times of the control pulses succeed in switching off the Rabi oscillations. Depending on the arrival times of control pulses, a variety of exotic nonadiabatic cavity quantum electrodynamics effects can be observed. We show that control pulses with specific arrival times, performing which-path and quantum-eraser operations, are able to suddenly switch-off and on first-order coherence of cavity photons, without affecting their strong?coupling population dynamics.  相似文献   

4.
We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.  相似文献   

5.
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one of the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment.  相似文献   

6.
7.
《Nuclear Physics A》1999,660(1):101-117
The Hanbury Brown–Twiss (HBT) effect in two-particle correlations is a fundamental wave phenomenon that occurs at the sensitive elements of detectors; it is one of the few processes in elementary particle detection that depends on the wave mechanics of the produced particles. We analyze here, within a quantum mechanical framework for computing correlations among high-energy particles, how particle detectors produce the HBT effect. We focus on the role played by the wave functions of particles created in collisions and the sensitivity of the HBT effect to the arrival times of pairs at the detectors, and show that the two detector elements give an enhanced signal when the single-particle wave functions of the detected particles overlap at both elements within the characteristic atomic transition time of the elements. The measured pair correlation function is reduced when the delay in arrival times between pairs at the detectors is of order of or larger than the transition time.  相似文献   

8.
杨玉  许录平  阎博  张洪阳  申洋赫 《中国物理 B》2017,26(11):110305-110305
In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.  相似文献   

9.
A setup that entails nonuniqueness in the quantum prediction of the arrival/transit time distribution is analysed using the Bohmian model, implying the plausibility of two distinct calculational schemes having empirically distinguishable predictions. One of them agrees with the results obtained from the probability current density based approach that has been suggested for predicting the quantum arrival/transit time distribution.  相似文献   

10.
The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar. In this study, in order to research the measurement of pulse arrival time, an experimental system is set up. The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system. An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1–10 keV band. The MCP-based detector, the structure and principle of the experimental system, and results of the pulse profile are described in detail. In addition, a discussion of the effects of different X-ray pulse periods and the quantum efficiency of the detector on pulse-profile signal-to-noise ratio (SNR) is presented. Experimental results reveal that the SNR of the measured pulse profile becomes enhanced as the quantum efficiency of the detector increases. The SNR of the pulse profile is higher when the period of the pulse is smaller at the same integral.  相似文献   

11.
We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is quantum Merlin-Arthur complete, which is the quantum generalization of nondeterministic polynomial time complete. Our proof uses a simple mapping from spin systems to fermionic systems, as well as a convex optimization technique that reduces the problem of finding ground states to N representability.  相似文献   

12.
Non-local implementations of quantum gates are a vital part of quantum networks. We find an optimal non-local implementation of quantum functions, the quantum gate equivalent of a switch statement. Then, we apply this result to the Deutsch-Jozsa problem, obtaining a distributed Deutsch-Jozsa algorithm and we show the relative efficiency improvement. As an application, we find a non-cooperative game based upon the original Deutsch-Jozsa problem where a classical agent has at most a 50% probability of winning, while a quantum agent can win every time.  相似文献   

13.
基于砷化镓/磷化铟雪崩光电二极管(InGaAs/InP APD)的半导体单光子探测器因工作在通信波段,且具有体积小、成本低、操作方便等优势,在实用化量子通信技术中发挥了重要作用.为尽可能避免暗计数和后脉冲对单光子探测的影响,InGaAs/InP单光子探测器广泛采用门控技术来快速触发和淬灭雪崩效应,有效门宽通常在纳秒量级.本文研究揭示了门控下单光子探测器可测量的最大符合时间宽度受限于门控脉冲的宽度,理论分析与实验结果良好拟合.该研究表明,门控下InGaAs/InP单光子探测器用于双光子符合测量具有显著的时域滤波特性,限制了其在基于双光子时间关联测量的量子信息技术中的应用.  相似文献   

14.
15.
We report on a guided-wave asynchronous heralded single-photon source based on the creation of nondegenerate photon pairs by spontaneous parametric downconversion in a periodically poled lithium niobate wave-guide. We show that, by use of the signal photon at 1310 nm as a trigger, a gated detection process permits announcement of the arrival of single photons at 1550 nm at the output of a single-mode optical fiber with a high probability of 0.37. At the same time the multiphoton emission probability is reduced by a factor of 10 compared with Poissonian light sources. Furthermore, the model we have developed to calculate those figures of merit is shown to be accurate. This study can therefore serve as a paradigm for the conception of new quantum communication and computation networks.  相似文献   

16.
A Langevin particle is initiated at the origin with positive velocity. Its trajectory is terminated when it returns to the origin. In 1945, Wang and Uhlenbeck posed the problem of finding the joint probability density function (PDF) of the recurrence time and velocity, naming it "the recurrence time problem". We show that the short-time asymptotics of the recurrence PDF is similar to that of the integrated Brownian motion, solved in 1963 by McKean. We recover the long-time t(-3/2) decay of the first arrival PDF of diffusion by solving asymptotically an appropriate variant of McKean's integral equation.  相似文献   

17.
We constructed an efficient source of photon pairs using a waveguide-type nonlinear device and performed a two-photon interference experiment with an unbalanced Michelson interferometer. As the interferometer has two arms of different lengths, photons from the short arm arrive at the detector earlier than those from the long arm. We find that the arrival time difference (Delta L/c) and the time window of the coincidence counter (Delta T) are important parameters which determine the boundary between the classical and quantum regimes. Fringes of high visibility ( 80% +/- 10%) were observed when Delta T < Delta L/c. This result is explained only by quantum theory and is clear evidence for quantum entanglement of the interferometer's optical paths.  相似文献   

18.
We study the problem of energy relaxation in a one-dimensional electron system. The leading thermalization mechanism is due to three-particle collisions. We show that for the case of spinless electrons in a single channel quantum wire the corresponding collision integral can be transformed into an exactly solvable problem. The latter is known as the Schr?dinger equation for a quantum particle moving in a P?schl-Teller potential. The spectrum for the resulting eigenvalue problem allows for bound-state solutions, which can be identified with the zero modes of the collision integral, and a continuum of propagating modes, which are separated by a gap from the bound states. The inverse gap gives the time scale at which counterpropagating electrons thermalize.  相似文献   

19.
The time difference of arrival (TDOA) source localization inverse problem is analyzed for two-dimensional signal propagation detected by a small number of sensor elements in a monitoring array. Nonlinear least-squares solutions are found based on the assumptions of geodesic rays propagating at constant speed. The two-dimensional (2D) TDOA source location problem is shown in the case of three sensors to have dual possible solutions for some combinations of arrival time differences. In the case of four non-collinear sensors, there are unique solutions for all physically possible combinations of time differences. Dual solutions to the three-sensor problem are associated with a small range of arrival time differences but large regions in physical space. The locations of the dual solutions are separated by a wide variety of distances, which in some cases prevent the use of alternative reasoning to remove the ambiguity. Three-sensor TDOA cannot be reliably used for 2D source location unless the source is a priori known to be within either the spatial region spanned by the sensor array or the external zones of unique solution. Determining the minimum number of sensors necessary to unambiguously solve the source location problem assists in cost-effective design of sensor arrays.  相似文献   

20.
We show that the use of real measuring rods in quantum mechanics places a fundamental gravitational limit to the level of entanglement that one can ultimately achieve in quantum systems. The result can be seen as a direct consequence of the fundamental gravitational limitations in the measurements of length and time in realistic physical systems. The effect may have implications for long distance teleportation and the measurement problem in quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号