首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems, the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy exchanges with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines and some interpretation of heat transferred and work performed at the quantum level, we are able to clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to have the heat source hotter than the sink, but there must be a minimum temperature difference between the hotter source and the cooler sink before any work can be extracted through the engines. The size of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. Inspired and motivated by the Rabi oscillations, we further introduce some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some of the results above are also generalisable to quantum heat engines of an infinite number of energy levels including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous spectra.  相似文献   

2.
We study a new quantum heat engine (QHE), which is assisted by a Maxwell's demon. The QHE requires three steps: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition and operation efficiency of this composite QHE. Using controllable superconducting quantum circuits as an example, we show how to construct our QHE. The essential role of the demon is explicitly demonstrated in this macroscopic QHE.  相似文献   

3.
4.
An idealized, two-dimensional Maxwell demon is described which incorporates an irreversible process. The vertex of the device acts as a purely mechanical ‘trap door’. This idealized mechanism is found to generate a violation of the second law of thermodynamics. These results indicate that the second law of thermodynamics is not valid in general for idealized, irreversible systems.  相似文献   

5.
We present an analysis of Szilard's one-molecule Maxwell's demon, including a detailed entropy accounting, that suggests a general theory of the entropy cost of information. It is shown that the entropy of the demon increases during the expansion step, due to the decoupling of the molecule from the measurement information. It is also shown that there is an entropy symmetry between the measurement and erasure steps, whereby the two steps additivelv share a constant entropy change, but the proportion that occurs during each of the two steps is arbitrary. Therefore the measurement step may be accompanied by an entropy increase, a decrease, or no change at all, and likewise for the erasure step. Generalizing beyond the demon, decorrelation between a physical system and information about that system always causes an entropy increase in the joint system comprised of both the original system and the information. Decorrelation causes a net entropy increase in the universe unless, as in the Szilard demon, the information is used to decrease entropy elsewhere before the correlation is lost. Thus, information is thermodynamically costly precisely to the extent that it is not used to obtain work from the measured system.  相似文献   

6.
孙昌璞  全海涛 《物理》2013,42(11):756-768
文章系统地评述了麦克斯韦妖佯谬相关的热力学基本观念的发端、历史沿革以及当前正在发展的科学前沿问题。文章作者从以下两个方面详细地阐述了为什么信息处理过程本质上是一个与麦克斯韦妖观念相“纠缠”的物理过程:(1)信息认知和提取可以辅助物理系统更有效地做功;(2) 物理定律会对信息处理过程施加一个不可逾越的物理极限。这些分析与概念的澄清将有助于正确理解计算过程和热力学之间的关系。  相似文献   

7.
8.
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.  相似文献   

9.
Quantum statistical laws are derived from bona fide stationary probability distributions of physical stochastic processes. These distributions are shown to be the laws of error for which the average occupation numbers are the most probable values. They determine uniquely the statistical entropy functions and the second law gives the quantum statistical distributions.  相似文献   

10.
Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.  相似文献   

11.
Shannon observed the relation between information entropy and Maxwell demon experiment to come up with information entropy formula. After that, Shannon's entropy formula is widely used to measure information leakage in imperative programs. But in the present work, our aim is to go in a reverse direction and try to find possible Maxwell's demon experimental setup for contemporary practical imperative programs in which variations of Shannon's entropy formula has been applied to measure the information leakage. To establish the relation between the second principle of thermodynamics and quantitative analysis of information leakage, present work models contemporary variations of imperative programs in terms of Maxwell's demon experimental setup. In the present work five contemporary variations of imperative program related to information quantification are identified. They are:(i) information leakage in imperative program,(ii) imperative multithreaded program,(iii) point to point leakage in the imperative program,(iv) imperative program with infinite observation,and(v) imperative program in the SOA-based environment. For these variations, minimal work required by an attacker to gain the secret is also calculated using historical Maxwell's demon experiment. To model the experimental setup of Maxwell's demon, non-interference security policy is used. In the present work, imperative programs with one-bit secret information have been considered to avoid the complexity. The findings of the present work from the history of physics can be utilized in many areas related to information flow of physical computing, nano-computing, quantum computing,biological computing, energy dissipation in computing, and computing power analysis.  相似文献   

12.
We apply the generalized second law of thermodynamics to discriminate among quantum corrections (whether logarithmic or power-law) to the entropy of the apparent horizon in spatially Friedmann–Robertson–Walker universes. We use the corresponding modified Friedmann equations along with either Clausius relation or the principle of equipartition of the energy to set limits on the value of a characteristic parameter entering the said corrections.  相似文献   

13.
Rajendra Bhandari 《Pramana》1976,6(3):135-145
The problem of the subjective nature of entropy and its relation to information and irreversibility is examined in the light of the quantum measurement problem. The main thesis of the paper is that state collapse during a measurement and hence entropy increase in the observed universe is seen by observers who are only able to observe a restricted manifold of states determined by their concepts, language, etc., in short by their level of perception. The thesis leads to the assertion that any universe with a structure must evolve.  相似文献   

14.
15.
The second law of thermodynamics in nonextensive statistical mechanics is discussed in the quantum regime. Making use of the convexity property of the generalized relative entropy associated with the Tsallis entropy indexed by q, Clausius' inequality is shown to hold in the range q in (0, 2]. This restriction on the range of the entropic index, q, is purely quantum mechanical and there exists no upper bound of q for validity of the second law in classical theory.  相似文献   

16.
王涛  黄晓理  刘洋  许欢 《物理学报》2013,62(6):60301-060301
以带有Dzyaloshinski-Mariya 相互作用的两比特XXZ模型为工作物质构建纠缠量子热机. 在量子热力学平衡态下, 采用Kieu的形式描述了做功与热传递.对于不同的各向异性参数, 分析了热机循环中量子纠缠与热传递、做功以及机械效率等热力学量之间的关系. 结果表明: 在这个纠缠体系中, 热力学第二定律依然成立; 机械效率的等值线图是环状曲线; 当各向异性参数Δ较小时, 热机在C1 > C2C1 < C2 两区域运行, 当增大Δ值时, 热机只在C1 > C2 区域运行. 关键词: 量子热机 并发度 机械效率  相似文献   

17.
In the classical limit no work is needed to couple a system to a bath with sufficiently weak coupling strength (or with arbitrarily finite coupling strength for a linear system) at the same temperature. In the quantum domain this may be expected to change due to system-bath entanglement. Here we show analytically that the work needed to couple a single linear oscillator with finite strength to a bath cannot be less than the work obtainable from the oscillator when it decouples from the bath. Therefore, the quantum second law holds for an arbitrary temperature. This is a generalization of the previous results for zero temperature [Ford and O'Connell, Phys. Rev. Lett. 96, 020402 (2006); Kim and Mahler, Eur. Phys. J. B 54, 405 (2006)]; in the high temperature limit we recover the classical behavior.  相似文献   

18.
V. pek  J. Bok 《Physica A》2001,290(3-4)
One of the previously reported linear models of open quantum systems (interacting with a single thermal bath but otherwise not aided from outside) endowed with the faculty of spontaneous self-organization challenging standard thermodynamics is reconstructed here. It is then able to produce, in a cyclic manner, a useful (this time mechanical) work at the cost of just thermal energy in the bath whose quanta get properly in-phased. This means perpetuum mobile of the second kind explicitly violating the second law in its Thomson formulation. No approximations can be made responsible for the effect as a special scaling procedure is used that makes the chosen kinetic theory exact. The effect is purely quantum and disappears in the classical limit.  相似文献   

19.
Optimal configuration of a class of endoreversible heat engines with fixed duration, input energy and radiative heat transfer law (q ∝ Δ(T 4)) is determined. The optimal cycle that maximizes the efficiency of the heat engine is obtained by using optimal-control theory, and the differential equations are solved by the Taylor series expansion. It is shown that the optimal cycle has eight branches including two isothermal branches, four maximum-efficiency branches, and two adiabatic branches. The interval of each branch is obtained, as well as the solutions of the temperatures of the heat reservoirs and the working fluid. A numerical example is given. The obtained results are compared with those obtained with the Newton’s heat transfer law for the maximum efficiency objective, those with linear phenomenological heat transfer law for the maximum efficiency objective, and those with radiative heat transfer law for the maximum power output objective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号