首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yi-Yan Yang 《中国物理 B》2021,30(6):68703-068703
So far among the nineteen pairs of detected double neutron star (DNS) systems, it is a usual fact that the first-born recycled pulsar is detected, however the youngest DNS system PSR J1906+0746, with the characteristic age of 113 kyr, is one of the three detected DNS as a non-recycled and second-born NS, which is believed to be formed by an electron capture or a low energy ultra-stripped iron core-collapse supernova (SN) explosion. The SN remnant around PSR J1906+0746 is too dim to be observed by optical telescopes, then its x-ray flux limit has been given by Chandra. A reference pulsar PSR J1509-5850 with the young characteristic age of 154 kyr was chosen as an object of comparison, which has an SN remnant observed by Chandra and is believed to be formed by iron core SN explosion. We impose a restriction on the maximum kinetic energy of electron-capture (EC) SN explosion that induces the formation of PSR J1906+0746. The estimated result is (4-8)×1050 erg (1 erg=10-7 J), which is consistent with that of the published simulations of the EC process, i.e., a lower value than that of the conventional iron core SN explosion of (1-2)×1051 erg. As suggested, EC process for NS formation is pertained to the subluminous type Ic SN by the helium star with ONeMg core, thus for the first time we derived the kinetic energy of EC SN explosion of DNS, which may be reconciled with the recent observation of type Ic SN 2014ft with kinetic energy of 2×1050 erg.  相似文献   

2.
I use recent observational and theoretical studies of type Ia supernovae (SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf (WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay (MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common (normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.  相似文献   

3.
An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8+/-0.4 Myr ago [Knie, Phys. Rev. Lett. 93, 171103 (2004)10.1103/PhysRevLett.93.171103]. In an attempt to confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured 60Fe concentrations along a dated marine sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago. Possible causes for the discrepancy are discussed.  相似文献   

4.
Core-collapse supernovae are accompanied by formation of neutron stars. The gravitational energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2D MHD simulations, where the source of energy is rotation and the magnetic field serves as a “transition belt” for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to differential rotation. When the twisted toroidal component strongly exceeds the poloidal field, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. A mildly collimated jet is produced for the dipolelike type of the initial field. The text was submitted by the authors in English.  相似文献   

5.
《Nuclear Physics A》1995,588(1):c345-c356
Recent theoretical development of collapse-driven supernova explosion is reviewed. In particular, we discuss in detail i) convection in the hot bubble region above the protoneutron star as the source of the large amplitude velocity fluctuations which is necessary to explain large scale mixing in SN1987 A, and ii) jet-like explosion induced by axisymmetric neutrino emission from a rotating oblate proto-neutron star, which might account for asymmetry of expanding envelope of SN1987 A.  相似文献   

6.
搭建了电爆炸金属丝实验平台,在空气中电爆炸铁丝来制备纳米金属颗粒。利用电阻分压器与Rogowski线圈来测量电爆炸过程中铁丝上的负载电压与电流。将负载电压与电流之积进行时间积分来估算沉积在铁丝上的能量。使用光电探测器对电爆炸过程中产生的等离子体发光信号进行探测。对铁丝电爆炸后形成的产物使用高倍显微镜、扫描电镜(SEM)、透射电镜(TEM)、能谱分析仪(EDS)以及X射线衍射仪(XRD)进行观测,来研究其物相特性。实验结果表明:电爆炸过程中,当铁丝由液相变为气相时,其电阻急剧增加,因此电流几乎不能流过铁丝,同时铁丝上的负载电压会趋近于电容器的初始充电电压。随着能量的持续积累,等离子体在爆炸腔中形成。由于原本被阻断的电流能够从低电阻等离子体中流过,因此电压电流波形变为欠阻尼波形。电爆炸铁丝所得的产物为Fe3O4纳米颗粒,其中大部分呈规则的球形。Fe3O4纳米颗粒的粒径主要分布在30~60 nm之间,并且符合对数正态分布。  相似文献   

7.
The Sun is a plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova (SN) and is composed mostly of elements made near the SN core (Fe, O, Ni, Si, and S), like the rocky planets and ordinary meteorites. Neutron emission from the central neutron star triggers a series of reactions that generate solar luminosity, solar neutrinos, solar mass fractionation, and an outpouring of hydrogen in the solar wind. Mass fractionation seems to have operated in the parent star and likely occurs in other stars as well. The text was submitted by the authors in English.  相似文献   

8.
An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.  相似文献   

9.
We develop the idea, proposed earlier, of a possible role of neutrons, released in a supernova (SN) explosion, as a source of polarized electrons that cause chiral asymmetry of organic molecules in interstellar gas-dust clouds. The neutrons are carried away from the dense SN shell by a relativistic neutron fireball with Lorentz factor γ of order 100. At the early stage of this carrying away, the ejected polarized electrons generate circularly polarized photons as a result of bremsstrahlung in the fireball plasma. The photons of energy near 5 eV in the ultraviolet part of the spectrum show a high efficiency of the chiral effect. In the favorable case of low absorption in the interstellar medium this mechanism may appear to be more (by two orders of magnitude) efficient than the chiral effect of the polarized electrons from the same fireball.  相似文献   

10.
Most supernova theories state that this phenomenon lasts for a few seconds and ends with a big final explosion. However, these theories do not take into account several experimental results obtained with neutrino and gravitational wave detectors during the explosion of SN 1987A, the only supernova observed in a nearby galaxy in modern age. According to these experimental results the phenomenon is much more complex that envisaged by current theories, and has a duration of several hours. Since recent data of the X-ray NASA Satellite NuSTAR show a clear evidence of an asymmetric collapse, we have revisited the experimental data recorded by some underground and gravitational wave detectors running at the time of SN 1987A. New evidence is shown that confirms the previous results, namely that the data recorded by the gravitational wave detectors running in Rome and in Maryland are strongly correlated with the data of both the LSD (Mont Blanc) and the Kamiokande detectors, and that the correlation extends over a long period of time (one or two hours) centered at the Mont Blanc time. In addition, the signals of the GW detectors preceded the signals of the underground detectors by a time of order of one second. This result, obtained by comparing six independent files of data recorded by four different experiments located at intercontinental distances, indicates that also Kamiokande detected neutrinos at theMont Blanc time, but these interactions were not identified because not grouped in a burst. A similar correlation was also found in the data of the underground experiments in Mont Blanc and Baksan.  相似文献   

11.
Supernova (SN) explosions are one of the most energetic---and potentially lethal---phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at approximately 130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of (60)Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that approximately 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.  相似文献   

12.
The idea of the magnetorotational explosion mechanism is that the energy of rotation of the neutron star formed in the course of a collapse is transformed into the energy of an expanding shock wave by means of a magnetic field. In the two-dimensional case, the time of this transformation depends weakly on the initial strength of the poloidal magnetic field because of the development of a magnetorotational instability. Differential rotation leads to the twisting and growth of the toroidal magnetic-field component, which becomes much stronger than the poloidal component. As a result, the development of the instability and an exponential growth of all field components occur. The explosion topology depends on the structure of the magnetic field. In the case where the initial configuration of the magnetic field is close to a dipole configuration, the ejection of matter has a jet character, whereas, in the case of a quadrupole configuration, there arises an equatorial ejection. In either case, the energy release is sufficient for explaining the observed average energy of supernova explosion. Neutrinos are emitted as the collapse and the formation of a rapidly rotating neutron star proceeds. In addition, neutrino radiation arises in the process of magnetorotational explosion owing to additional rotational-energy losses. If the mass of a newborn neutron star exceeds the mass limit for a nonrotating neutron star, then subsequent gradual energy losses may later lead to the formation of a black hole. In that case, the energy carried away by a repeated flash of neutrino radiation increases substantially. In order to explain an interval of 4.5 hours between the two observed neutrino signals from SN 1987A, it is necessary to assume a weakening of the magnetorotional instability and a small initial magnetic field (109?1010 G) in the newly formed rotating neutron star. The existence of a black hole in the SN 1987A remnant could explain the absence of any visible pointlike source at the center of the explosion.  相似文献   

13.
A major part of the energy released upon the gravitational collapse of massive-star cores is carried away by neutrinos. Neutrinos play a crucial role in collapsing supernovae (SNe). At the present time, mathematical models of core-collapse SNe are based on multidimensional gas dynamics and thermonuclear reactions, whereas the neutrino transport is frequently treated in simplified way. An accurate analysis of neutrinos in a spherically symmetric gravitational collapse is performed on the basis of Boltzmann kinetic equations including all weak-interaction reactions with exact quantum-mechanical matrix elements. The role of multidimensional effects is studied bymeans of multidimensional gas dynamics allowing for the neutrino transport via diffusion treated by employing flux limiters. The possibility of largescale convection, which is of interest both from the point of view of explaining a type II supernova (SN) and from the point of view of implementing an experiment aimed at detecting possible energetic (?10 MeV) neutrinos from an SN, is discussed. Thermonuclear burning leads to the explosion of a type I SN. A hot central region and the subsequent large-scale convection may also play an important role in the SN mechanism. If neutrinos and convection play a key role for a type II SN, then, in order to explain gamma radiation from product radioactive elements, convection is of importance in the case of SNe belonging to both types. In addition, convection may be important for bright type I SNe. Original methods are presented for multidimensional gas dynamics involving thermonuclear burning and for multitemperature gas dynamics involving radiative transfer.  相似文献   

14.
Observations of the gravitational waves from the explosion of SN 1987A are shown to be more consistent with a new special relativistic theory of gravitation than with predictions of general relativity.  相似文献   

15.
A special arrangement of a gravity-wave experiment, in which the noise background of the gravity detector is investigated near time markers corresponding to the detection of astrophysical events accompanying neutron or gamma bursts, is studied. A general algorithm is developed for analyzing the traces for the case of resonant solid-state detectors. The efficiency of the algorithm is demonstrated in a reanalysis of old data concerning the “neutron-gravity correlation” effect associated with the explosion of the SN1987A Supernova. Modifications of the algorithm for searching for gamma-gravity correlations are proposed.  相似文献   

16.
The extremely luminous supernova SN2006gy is explained as some other peculiar supernovae: light is produced by a radiative shock propagating in a dense circumstellar envelope. This envelope is formed by a previous weak explosion at a stage of hydrodynamic instability due to creation of electron-positron pairs in stellar interiors. The problems in the theory and observations of supernovae created by multiple explosions are briefly reviewed.  相似文献   

17.
The extremely luminous supernova SN2006gy is explained as some other peculiar supernovae: light is produced by a radiative shock propagating in a dense circumstellar envelope. This envelope is formed by a previous weak explosion at a stage of hydrodynamic instability due to creation of electron-positron pairs in stellar interiors. The problems in the theory and observations of supernovae created by multiple explosions are briefly reviewed.  相似文献   

18.
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.  相似文献   

19.
The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally confined detonation (GCD) mechanism predicts a strongly polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation.  相似文献   

20.
Experimental data obtained by means of underground detectors during the explosion of the SN 1987A supernova on February 23, 1987, are discussed. At that time, such data were being collected by two scintillation detectors—the Soviet–Italian liquid scintillation detector (LSD) in a Mont Blanc tunnel and the Baksan underground scintillation telescope (BUST) of the Institute forNuclear Research (Russian Academy of Sciences)—and two Cherenkov detectors—Kamiokande II (Japan) and the Irvine–Michigan–Brookhaven (IMB) detector (USA). Two key instants in SN 1987A evolution that were accompanied by neutrino signals are highlighted. These were 2:52 UT in LSD and 7:35 UT in the other detectors. A group of studies in which correlations between pulses in the different detectors between 1:45 and 3:45 UT and double pulses in LSD between 5:40 and 10:15 UT were observed are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号