首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hui Pan  Su-Qing Duan 《Physics letters. A》2008,372(18):3292-3298
The effects of an ac electric field on the Fano resonance in a parallel-coupled double quantum dot system are investigated theoretically. The field can induce the photon-assisted Fano resonances for both symmetrical and asymmetrical parallel configurations. The magnitude and position of the photon-assisted Fano peak can be tuned by the ac field strength and frequency, respectively. Furthermore, the Fano resonance can appear with increasing the field frequency for both the symmetrical and asymmetrical configurations. This provides an efficient mechanism to control the Fano resonance. The photon-electron pumping effects for the symmetrical and asymmetrical cases are also studied in the weak- and strong-coupling regime.  相似文献   

2.
We investigate a tunable Fano interferometer consisting of a quantum dot coupled via tunneling to a one-dimensional channel. In addition to Fano resonance, the channel shows strong Coulomb response to the dot, with a single electron modulating channel conductance by factors up to 100. Where these effects coexist, line shapes with up to four extrema are found. A model of Coulomb-modified Fano resonance is developed and gives excellent agreement with experiment.  相似文献   

3.
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations, the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and conductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model.  相似文献   

4.
We develop a general method to evaluate the Kondo temperature in a multilevel quantum dot that is weakly coupled to conducting leads. Our theory reveals that the Kondo temperature is strongly enhanced when the intradot energy-level spacing is comparable or smaller than the charging energy. We propose an experiment to test our result, which consists of measuring the size dependence of the Kondo temperature.  相似文献   

5.
6.
We consider T–shaped, two–dimensional quantum waveguides containing attractive or repulsive impurities with a smooth, realistic shape, and study how the resonance behavior of the total conductance depends upon the strength of the defect potential and the geometry of the device. The resonance parameters are determined locating the relevant S–matrix poles in the Riemann energy surface. The total scattering operator is obtained from the S–matrices of the various constituent segments of the device through the –product composition rule. This allows for a numerically stable evaluation of the scattering matrix and of the resonance parameters.  相似文献   

7.
Detecting the Kondo screening cloud around a quantum dot   总被引:2,自引:0,他引:2  
A fundamental prediction of scaling theories of the Kondo effect is the screening of an impurity spin by a cloud of electrons spread out over a mesoscopic distance. This cloud has never been observed experimentally. Recently, aspects of the Kondo effect have been observed in experiments on quantum dots embedded in quantum wires. Since the length of the wire may be of order the size of the screening cloud, such systems provide an ideal opportunity to observe it. We point out that persistent current measurements in a closed ring provide a conceptually simple way of detecting this fundamental length scale.  相似文献   

8.
Kondo correlation in a spin polarized quantum dot (QD) results from the dynamical formation of a spin singlet between the dot's net spin and a Kondo cloud of electrons in the leads, leading to enhanced coherent transport through the QD. We demonstrate here significant dephasing of such transport by coupling the QD and its leads to potential fluctuations in a nearby "potential detector." The qualitative dephasing is similar to that of a QD in the Coulomb blockade regime in spite of the fact that the mechanism of transport is quite different. A much stronger than expected suppression of coherent transport is measured, suggesting that dephasing is induced mostly in the "Kondo cloud" of electrons within the leads and not in the QD.  相似文献   

9.
We study the ac conductance and equilibrium current fluctuations of a Coulomb-blockaded quantum dot in the Kondo regime. To this end we have developed an extension of the numerical renormalization group suitable for the nonperturbative calculation of finite-frequency transport properties. We demonstrate that ac transport gives access to the many-body resonance in the equilibrium spectral density. It provides a new route for measuring this key signature of Kondo physics, which so far has defied direct experimental observation.  相似文献   

10.
The shot noise in the current through a quantum dot is calculated as a function of voltage from the high-voltage Coulomb-blockaded regime to the low-voltage Kondo regime. Using several complementary approaches, it is shown that the zero-frequency shot noise (scaled by the voltage) exhibits a nonmonotonic dependence on voltage, with a peak around the Kondo temperature. Beyond giving a good estimate of the Kondo temperature, it is shown that the shot noise yields additional information on the effects of electronic correlations on the local density of states in the Kondo regime, unaccessible in traditional transport measurements.  相似文献   

11.
贺泽龙  吕天全  崔莲  薛惠杰  李林军  尹海涛 《中国物理 B》2011,20(11):117303-117303
Using the nonequilibrium Keldysh Green's function technique, the Fano effect of a parallel-coupled triple Rashba quantum dot system is investigated. The conductance as a function of electron energy is numerically calculated. Compared with the case of a parallel-coupled double quantum dot system, two additional Fano resonance peaks occur in the conductance spectrum. By adjusting the structural parameters, the two Fano resonance peaks may change into the resonance peaks. In addition, the influence of Rashba spin-orbit interaction on the conductance is studied.  相似文献   

12.
In the presence of direct trajectories connecting source and drain contacts, the conductance of a quantum dot may exhibit resonances of the Fano type. Since Fano resonances result from the interference of two transmission pathways, their line shape (as described by the Fano parameter q) is sensitive to dephasing in the quantum dot. We show that under certain circumstances the dephasing time can be extracted from a measurement of q for a single resonance. We also show that q fluctuates from level to level, and we calculate its probability distribution for a chaotic quantum dot. Our results are relevant to recent experiments by G?res et al. [Phys. Rev. B 62, 2188 (2000)].  相似文献   

13.
The conductance across a quantum dot can be influenced by levels localized in the dot and having little hybridization with the conduction channel. Fano lineshapes arising in resonant transmission measurements, imply interference between the localized and extended states. By applying a magnetic orthogonal field, the total spin of a quantum dot can be tuned. Electron correlations drive the dot through level crossings to higher spin states. Such crossings can give rise to Kondo conductance when the dot is at Coulomb blockade close to a magnetic field induced level degeneracy. In a previous work [P. Stefański, A. Tagliacozzo, B.R. Bulka, Phys. Rev. Lett. 93 (2004) 186805] we have shown that a Fano-like pattern also appears when the continuum of the conduction states originates from a broad Kondo resonance. A bunch of localized core levels, weakly coupled to the Kondo resonance, imprints the broad Kondo peak with Fano lineshapes. A signature of the presence of correlations in the quantum dot is discussed.  相似文献   

14.
We study the thermopower and thermal conductivity of a gate-defined quantum dot, with a very strong Coulomb repulsion inside the dot, employing the X-boson approach for the impurity Anderson model. Our results show a change in the sign of the thermopower as function of the energy level of the quantum dot (gate voltage), which is associated with an oscillatory behavior and a suppression of the thermopower magnitude at low temperatures. We identify two relevant energy scales: a low temperature scale dominated by the Kondo effect and a T∼ΔTΔ temperature scale characterized by charge fluctuations. We also discuss the Wiedemann–Franz relation and the thermoelectric figure of merit. Our results are in qualitative agreement with recent experimental reports and other theoretical treatments.  相似文献   

15.
We consider a lateral double-dot system in the Coulomb blockade regime with a single spin-1/2 on each dot, mutually coupled by an antiferromagnetic exchange interaction. Each of the two dots is contacted by two leads. We demonstrate that the voltage across one of the dots will have a profound influence on the current passing through the other dot. Using poor man's scaling, we find that the Kondo effect can lead to a strong enhancement of this transconductance.  相似文献   

16.
The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies ν of the order or higher than the frequency associated with the Kondo effect k(B)T (K)/h, with TK the Kondo temperature. The carbon nanotube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for hν ≈ k(B)T(K) a Kondo effect related singularity at a voltage bias eV ≈ hν, and a strong reduction of this singularity for hν ≈ 3k(B)T(K), in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the nonequilibrium dynamics of many-body phenomena in nanoscale devices.  相似文献   

17.
The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced.  相似文献   

18.
We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.  相似文献   

19.
20.
贺泽龙  吕天全  张迪 《中国物理 B》2013,22(2):27306-027306
Using the nonequilibrium Green’s function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号