首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive exact expressions for a number of aging functions that are scaling limits of nonequilibrium correlations, R(t(w),t(w)+t) as t(w)-->infinity, t/t(w)-->theta, in the 1D homogenous q-state Potts model for all q with T = 0 dynamics following a quench from T = infinity. One such quantity is (0)(t(w));sigma-->(n)(t(w)+t)> when n/square root of ([t(w))-->z. Exact, closed-form expressions are also obtained when an interlude of T = infinity dynamics occurs. Our derivations express the scaling limit via coalescing Brownian paths and a "Brownian space-time spanning tree," which also yields other aging functions, such as the persistence probability of no spin flip at 0 between t(w) and t(w)+t.  相似文献   

2.
We study Heisenberg antiferromagnets with nearest- (J1) and third- (J3) neighbor exchange on the square lattice. In the limit of spin S-->infinity, there is a zero temperature (T) Lifshitz point at J(3)=1/4J(1), with long-range spiral spin order at T=0 for J3>1/4J(1). We present classical Monte Carlo simulations and a theory for T>0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any T>0, but there is a broken lattice reflection symmetry for 0< or =T相似文献   

3.
We consider spin and electronic properties of itinerant electron systems, described by the spin-fermion model, near the antiferromagnetic critical point. We expand in the inverse number of hot spots in the Brillouin zone, N, and present the results beyond the previously studied N = infinity limit. We found two new effects: (i) Fermi surface becomes nested at hot spots, and (ii) vertex corrections give rise to anomalous spin dynamics and change the dynamical critical exponent from z = 2 to z>2. To first order in 1/N we found z = 2N/(N-2) which for a physical N = 8 yields z approximately 2.67.  相似文献   

4.
Using the anti-de Sitter/conformal field theory correspondence, we relate the shear viscosity eta of the finite-temperature N = 4 supersymmetric Yang-Mills theory in the large N, strong-coupling regime with the absorption cross section of low-energy gravitons by a near-extremal black three-brane. We show that in the limit of zero frequency this cross section coincides with the area of the horizon. From this result we find eta = pi / 8N(2)T3. We conjecture that for finite 't Hooft coupling g(2)(YM)N the shear viscosity is eta = f(g(2)(YM)N)N2T3, where f(x) is a monotonic function that decreases from O(x(-2)ln(-1)(1/x)) at small x to pi/8 when x-->infinity.  相似文献   

5.
Let f(N) and xi(-1)(N) represent, respectively, the free energy per spin and the inverse spin-spin correlation length of the critical Ising model on a N x infinity lattice, with f(N)-->f(infinity) as N-->infinity. We obtain analytic expressions for a(k) and b(k) in the expansions N( f(N)-f(infinity)) = SUM (k = 1)(infinity)a(k)/N(2k-1) and xi(-1)(N) = SUM (k = 1)(infinity)b(k)/N(2k-1) for square, honeycomb, and plane-triangular lattices, and find that b(k)/a(k) = (2(2k)-1)/(2(2k-1)-1) for all of these lattices, i.e., the amplitude ratio b(k)/a(k) is universal. We also obtain similar results for a critical quantum spin chain and find that such results could be understood from a perturbated conformal field theory.  相似文献   

6.
We consider spin-1/2 fermions of mass m with interactions near the unitary limit. In an applied periodic potential of amplitude V and period a_{L}, and with a density of an even integer number of fermions per unit cell, there is a second-order quantum phase transition between superfluid and insulating ground states at a critical V=V_{c}. We compute the universal ratio V_{c}ma_{L};{2}/variant Planck's over 2pi;{2} at N=infinity in a model with Sp(2N) spin symmetry. The insulator interpolates between a band insulator of fermions and a Mott insulator of fermion pairs. We discuss implications for recent experiments.  相似文献   

7.
Diffuse polarized neutron scattering studies have been carried out on single crystals of pyrochlore spin ice Ho2−xYxTi2O7 (x=0, 0.3, and 1) to investigate the effects of doping and anisotropy on spin correlations in the system. The crystals were aligned with the (1 −1 0) orientation coincident with the direction of neutron polarization. For all the samples studied the spin flip (SF) diffuse scattering (i.e. the in-plane component) reveals that the spin correlations can be described using a nearest-neighbour spin ice model (NNSM) at higher temperatures (T=3.6 K) and a dipolar spin ice model (DSM) as the temperature is reduced (T=30 mK). In the non-spin flip (NSF) channel (i.e. the out-of-plane component), the signature of strong antiferromagnetic correlations is observed for all the samples at the same temperature as the dipolar spin ice behaviour appears in the SF channel. Our studies show that the non-magnetic dopant Y does not significantly alter SF or NSF scattering for the spin ice state, even when Y doping is as high as 50%. In this paper, we focus on the experimental results of the highly doped spin ice HoYTi2O7 and compare our results with pure spin ice Ho2Ti2O7. The crossover from a dipolar to a nearest-neighbour spin ice behaviour and the doping insensitivity in spin ices are briefly discussed.  相似文献   

8.
We study the semiclassical limit of the Sp(N) generalization of the pyrochlore lattice Heisenberg antiferromagnet by expanding about the N --> infinity saddlepoint in powers of a generalized inverse spin. To leading order, we write down an effective Hamiltonian as a series in loops on the lattice. Using this as a formula for calculating the energy of any classical ground state, we perform Monte Carlo simulations and find a unique collinear ground state. This state is not a ground state of linear spin-wave theory, and can therefore not be a physical (N = 1) semiclassical ground state.  相似文献   

9.
We study spin correlations in Bose-Einstein condensates of spin 1 bosons with scatterings dominated by a total spin equal 2 channel. We show that the low energy spin dynamics in the system can be mapped into an o(n) nonlinear sigma model. n = 3 at the zero magnetic field limit and n = 2 in the presence of weak magnetic fields. In an ordered phase, the ground state has a discrete Z2 symmetry and is degenerate under the group [U(1)xS(n-1)]/Z(2). We explore consequences of the discrete symmetry and propose some measurements to probe it.  相似文献   

10.
We have studied (Tb1-xLax)2Mo2O7 pyrochlores by neutron diffraction and muSR at ambient and under applied pressure. (Tb,La) substitution expands the lattice and induces a change from a spin-glass-like state (x=0) to a noncollinear ferromagnet (x=0.2). In the ferromagnetic structure, the Tb moments orient close to their local anisotropy axes as for an ordered spin ice, while the Mo ones orient close to the net moment. The temperature dependence of the muSR relaxation rates and static local fields suggests a second transition of dynamical nature below the Curie transition. Under pressure, the long range order breaks down and a spin-glass-like state is recovered. The whole set of data provides a microscopic picture of the spin correlations and fluctuations in the region of the ferromagnetic-spin-glass threshold.  相似文献   

11.
M. I. Ryzhkin 《JETP Letters》2014,98(9):534-538
The statistical properties of the magnetization of the finite clusters of two-dimensional spin ice have been investigated. It has been shown by Monte Carlo simulations that the short-range ice rules in two dimensions lead to long-range correlations, which decay by a power law with distance. The long-range correlations, in turn, cause the nonextensivity of entropy and inapplicability of the central limit theorem for the magnetization. The behavior of the moments and distribution function of the magnetization with the cluster size disagrees with the theoretical predictions of the dipolar behavior of the correlation functions in two-dimensional spin ice.  相似文献   

12.
Using numerical self-consistent solutions of a sequence of finite replica symmetry breakings (RSB) and Wilson's renormalization group but with the number of RSB steps playing a role of decimation scales, we report evidence for a nontrivial T-->0 limit of the Parisi order function q(x) for the Sherrington-Kirkpatrick spin glass. Supported by scaling in RSB space, the fixed point order function is conjectured to be q*(a)=sqrt[pi]/2 a/xi erf(xi/a) on 0 a at T =0 and xi approximately 1.13+/-0.01. Xi plays the role of a correlation length in a-space. q*(a) may be viewed as the solution of an effective 1D field theory.  相似文献   

13.
The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.  相似文献   

14.
Phase transition in the two-dimensional q-state Potts model with random ferromagnetic couplings is studied in the large-q limit by a combinatorial optimization algorithm and by approximate mappings. We conjecture that the critical behavior of the model is controlled by the isotropic version of the infinite randomness fixed point of the random transverse-field Ising spin chain and the critical exponents are exactly given by beta=(3-sqrt[5])/4, beta(s)=1/2, and nu=1. The specific heat has a logarithmic singularity, but at the transition point there are very strong sample-to-sample fluctuations. Discretized randomness results in discontinuities in the internal energy.  相似文献   

15.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramér- and Sanov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Stein’s method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.  相似文献   

16.
We conjecture an expression for the Liouville theory conformal blocks and correlation functions on a Riemann surface of genus g and n punctures as the Nekrasov partition function of a certain class of N=2{\mathcal{N}=2} SCFTs recently defined by one of the authors. We conduct extensive tests of the conjecture at genus 0, 1.  相似文献   

17.
Squeezed spin states possess unique quantum correlation or entanglement and are significantly promising for advancing quantum information processing and quantum metrology. In recent back-to-back publications [C. Gross et al., Nature (London) 464, 1165 (2010) and Max F. Riedel et al., Nature (London) 464, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2 and -2.5 dB, respectively, in two-component atomic condensates exhibiting one-axis-twisting interactions. The noise reduction limit for the one-axis twisting scales as ∝1/N(2/3), which for a condensate with N~10(3) atoms is about 100 times below the standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the one-axis-twisting spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction ∝1/N or an extra tenfold improvement for N~10(3).  相似文献   

18.
We study the thermodynamic properties of the 3D Hubbard model for temperatures down to the Néel temperature by using cluster dynamical mean-field theory. In particular, we calculate the energy, entropy, density, double occupancy, and nearest-neighbor spin correlations as a function of chemical potential, temperature, and repulsion strength. To make contact with cold-gas experiments, we also compute properties of the system subject to an external trap in the local density approximation. We find that an entropy per particle S/N ≈ 0.65(6) at U/t = 8 is sufficient to achieve a Néel state in the center of the trap, substantially higher than the entropy required in a homogeneous system. Precursors to antiferromagnetism can clearly be observed in nearest-neighbor spin correlators.  相似文献   

19.
We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.  相似文献   

20.
Lieb@s conjecture for the Wehrl entropy of Bloch coherent states is proved for spin 1 and spin 3/2. Using a geometric representation we solve the entropy integrals for states of arbitrary spin and evaluate them explicitly in the cases of spin 1, 3/2, and 2. We also give a group theoretic proof for all spin of a related inequality. Received: 2 March 1999 / Accepted: 7 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号