首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the electronic structure of the conduction band states in InAs quantum boxes embedded in GaAs. Using cross-sectional scanning tunneling microscopy and spectroscopy, we report the direct observation of standing wave patterns in the boxes at room temperature. Electronic structure calculation of similar cleaved boxes allows the identification of the standing waves pattern as the probability density of the ground and first excited states. Their spatial distribution in the (001) plane is significantly affected by the strain relaxation due to the cleavage of the boxes.  相似文献   

2.
A scanning tunneling microscopy investigation of the 1/3 of a monolayer alpha phase of Sn on Si(111) reveals a new low temperature phase, which is electronic and not structural. This phase consists of a one-dimensional incommensurate electronic wave that coincides with a periodic modulation of the population of the substitutional Si defects, i.e., a defect density wave.  相似文献   

3.
Han-Bin Deng 《中国物理 B》2021,30(12):126801-126801
Interface can be a fertile ground for exotic quantum states, including topological superconductivity, Majorana mode, fractal quantum Hall effect, unconventional superconductivity, Mott insulator, etc. Here we grow single-unit-cell (1UC) FeTe film on NbSe2 single crystal by molecular beam epitaxy (MBE) and investigate the film in-situ with a home-made cryogenic scanning tunneling microscopy (STM) and non-contact atomic force microscopy (AFM) combined system. We find different stripe-like superlattice modulations on grown FeTe film with different misorientation angles with respect to NbSe2 substrate. We show that these stripe-like superlattice modulations can be understood as moiré pattern forming between FeTe film and NbSe2 substrate. Our results indicate that the interface between FeTe and NbSe2 is atomically sharp. By STM-AFM combined measurement, we suggest that the moiré superlattice modulations have an electronic origin when the misorientation angle is relatively small (≤ 3°) and have structural relaxation when the misorientation angle is relatively large (≥ 10°).  相似文献   

4.
The doping dependence of nanoscale electronic structure in superconducting Bi(2)Sr(2)CaCu(2)O(8 + delta) is studied by scanning tunneling microscopy. At all dopings, the low energy density-of-states modulations are analyzed according to a simple model of quasiparticle interference and found to be consistent with Fermi-arc superconductivity. The superconducting coherence peaks, ubiquitous in near-optimal tunneling spectra, are destroyed with strong underdoping and a new spectral type appears. Exclusively in regions exhibiting this new spectrum, we find local "checkerboard" charge ordering of high energy states, with a wave vector of Q = (+/- 2pi/4.5a(0),0); (0, +/- 2pi/4.5a(0)) +/- 15%. Surprisingly, this spatial ordering of high energy states coexists harmoniously with the low energy Bogoliubov quasiparticle states.  相似文献   

5.
《Surface science》1993,295(3):L1037-L1042
The initial stage of hydrogen (H) adsorption on the Si(001) surface is theoretically investigated to clarify the atomic and electronic structure induced by the adsorption. For this purpose, the electronic states are calculated in the density functional approach with the DV(discretized variation)-Xα-LCAO method. We also simulate the scanning tunneling microscopy (STM) image and the scanning tunneling spectroscopy (STS) spectrum in the first-principles approach. Our results of the STM image do not support the asymmetric dimer structure of the substrate with a H atom bonded to the upper Si atom. They conclude that the bright ball-like spot in the observed images comes from the free dangling bond induced on the remaining Si atom of the reacted dimer. However, the single particle picture cannot reproduce the observed features of the STS spectrum at the spot. We discuss that all the features can be well explained by the Coulomb blockade effect due to the electron correlation in the dangling bond state.  相似文献   

6.
We use spectroscopic imaging scanning tunneling microscopy (SI-STM) to visualize the spatial symmetries of the electronic states that occur at the pseudogap energy scale in underdoped cuprates. We find evidence for the local intra-unit-cell electronic nematicity—by which we mean the disordered breaking of C4v symmetry within each CuO2 unit cell [1]. We also find that the coexisting incommensurate (smectic) electronic modulations couple to the intra-unit-cell nematicity through their 2π2π topological defects [2].  相似文献   

7.
The joint density of states of Bi2Sr2CaCu2O(8+delta) is calculated by evaluating the autocorrelation of the single particle spectral function A(k, omega) measured from angle resolved photoemission spectroscopy (ARPES). These results are compared with Fourier transformed (FT) conductance modulations measured by scanning tunneling microscopy (STM). Good agreement between the two experimental probes is found for two different doping values examined. In addition, by comparing the FT-STM results to the autocorrelated ARPES spectra with different photon polarization, new insight on the form of the STM matrix elements is obtained. This shines new light on unsolved mysteries in the tunneling data.  相似文献   

8.
We present a detailed study of vortex-core spectroscopy in slightly overdoped Bi2Sr2CaCu2O8+delta using a low-temperature scanning tunneling microscope. Inside the vortex core, we observe a fourfold symmetric modulation of the local density of states with an energy-independent period of (4.3 +/- 0.3)a0. Furthermore, we demonstrate that this square modulation is related to the vortex-core states which are located at +/-6 meV. Since the core-state energy is proportional to the superconducting gap magnitude , our results strongly suggest the existence of a direct relation between the superconducting state and the local electronic modulations in the vortex core.  相似文献   

9.
The geometric and electronic structures of Fe islands on MgO film layers were studied with scanning tunneling microscopy and spectroscopy. The MgO layers were grown on a Nb-doped single crystal SrTiO3 (100) surface. Deposited Fe atoms aggregate into islands, the height and diameter of which are about 2.5 and 9.4 nm respectively. Fe islands modify the electronic structure of MgO surface; a ring type depression in the scanning tunneling microscope topography appears by lowered local electron density of states around Fe islands. We find that adsorbed Fe atoms reduce the gap states of MgO layers around Fe islands, which is attributed to the reason for the depletion of the electronic density of states.  相似文献   

10.
We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudogap region of the high-temperature superconductors. We show that the density of states near a nonmagnetic impurity in the DDW state is qualitatively different from that in a superconductor with dx(2)(-y(2)) symmetry. Thus, the electronic structure near impurities can provide insight into the nature of the two phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds.  相似文献   

11.
In this Letter we report the observation, by scanning tunneling microscopy, of a Mott metal to insulator transition at the surface of 1T-TaSe2. Our spectroscopic data compare considerably well with previous angle-resolved photoemission spectroscopy measurements and confirm the presence of a large hysteresis related to a first order process. The local character of the tunneling spectroscopy technique allows a direct visualization of the surface symmetry and provides spectroscopic measurements on the defect-free region of the sample. It follows that the electronic localization is driven purely by the enhancement of the charge density wave amplitude which drives a bandwidth controlled metal-insulator transition.  相似文献   

12.
We present scanning tunneling microscopy studies of the LaOFeAs parent compound of iron pnictide superconductors. High resolution spectroscopic imaging reveals strong standing wave patterns induced by quasiparticle interference of two-dimensional surface states. Fourier analysis shows that the distribution of scattering wave vectors exhibits pronounced twofold (C(2)) symmetry, strongly reminiscent of the nematic electronic state found in CaFe(1.94)Co(0.06)As(2). The implications of these results to the electronic structure of the pnictide parent states will be discussed.  相似文献   

13.
Because of its unique physical properties, graphene, a 2D honeycomb arrangement of carbon atoms, has attracted tremendous attention. Silicene, the graphene equivalent for silicon, could follow this trend, opening new perspectives for applications, especially due to its compatibility with Si-based electronics. Silicene has been theoretically predicted as a buckled honeycomb arrangement of Si atoms and having an electronic dispersion resembling that of relativistic Dirac fermions. Here we provide compelling evidence, from both structural and electronic properties, for the synthesis of epitaxial silicene sheets on a silver (111) substrate, through the combination of scanning tunneling microscopy and angular-resolved photoemission spectroscopy in conjunction with calculations based on density functional theory.  相似文献   

14.
Runxiao Zhang 《中国物理 B》2022,31(8):86801-086801
Nanoclusters consisting of a few atoms have attracted a lot of research interests due to their exotic size-dependent properties. Here, well-ordered two-dimensional Sb cluster superlattice was fabricated on Si substrate by a two-step method and characterized by scanning tunneling microscopy. High resolution scanning tunneling microscope measurements revealed the fine structures of the Sb clusters, which consist of several Sb atoms ranging from 2 to 7. Furthermore, the electronic structure of the nanocluster displays the quantized energy-level which is due to the single-electron tunneling effects. We believe that the fabrication of Sb cluster superlattice broadens the species of the cluster superlattice and provides a promising candidate to further explore the novel physical and chemical properties of the semimetal nanocluster.  相似文献   

15.
It is known that the use of Bi surfactant (unlike Sb) upon the growth of Ge layers on Si(111) increases the contrast between Ge and Si atoms in a scanning tunneling microscope. This makes it possible to distinguish the Ge and Si surfaces. This effect is studied using computer simulation based on the density functional theory. To explain the observed difference between the Ge and Si layers, both structural and electronic effects are considered. The local density of electronic states, as well as the corresponding decay length to vacuum, has been calculated for each of the surfaces. The simulation results have been compared to the previous scanning tunneling microscopy data.  相似文献   

16.
GdTe_3 is a layered antiferromagnetic(AFM) metal with charge density wave(CDW).We grew monolayer(ML)GdTe_3 on graphene/6H-SiC(0001) substrates by molecular beam epitaxy.The electronic and magnetic structures are studied by scanning tunneling microscopy/spectroscopy,quasi-particle interference(QPI) and first-principles calculations.Strong evidence of CDW persisting at the two-dimensional(2D) limit is found.Band dispersions and partially gapped energy bands near the Fermi surface are revealed by the QPI patterns.By density functional theory +U calculations,AFM order with stripe pattern is found to be the magnetic ground state for ML GdTe_(3).These results provide fundamental understanding and pave the way for further investigation of GdTe_3 at the 2D limit.  相似文献   

17.
We measured the local density of states (LDOS) of a quasi-two-dimensional (2D) electron system near point defects on a surface of highly oriented pyrolytic graphite with scanning tunneling microscopy and spectroscopy. Differential tunnel conductance images taken at very low temperatures and in high magnetic fields show a clear contrast between localized and extended spatial distributions of the LDOS at the valley and peak energies of the Landau level spectrum, respectively. The localized electronic state has a single circular distribution around the defects with a radius comparable to the magnetic length. The localized LDOS is in good agreement with a spatial distribution of a calculated wave function for a single electron in 2D in a Coulomb potential in magnetic fields.  相似文献   

18.
The adsorption structure and the electronic property of azidotrimethyltin (ATMT) on monolayer graphene were investigated using scanning tunneling microscopy and core-level photoemission spectroscopy. We also confirmed the n-type doping effect by scanning tunneling spectroscopy and work function measurements. We will systematically demonstrate the variation of characteristic of graphene induced by the chemical functionalized molecule as we confirmed the results using scanning tunneling microscopy in conjunction with core-level photoemission spectroscopy.  相似文献   

19.
Electronic charge order is a symmetry breaking state in high-Tc cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped(Bi,Pb)2Sr2CuO6+x sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is nondispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of ±1. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-Tccuprate superconductors and other charge density wave materials.  相似文献   

20.
The spatial variation of electronic states was imaged in the lightly doped Mott insulator Ca(2-x)NaxCuO2Cl2 using scanning tunneling microscopy or spectroscopy. We observed nanoscale domains with a high local density of states within an insulating background. The observed domains have a characteristic length scale of 2 nm (approximately 4-5a, a: lattice constant) with preferred orientations along the tetragonal [100] direction. We argue that such spatially inhomogeneous electronic states are inherent to slightly doped Mott insulators and play an important role for the insulator to metal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号