首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sagi Sheinkman 《哲学杂志》2016,96(26):2779-2799
The prevention of strength degradation of components is one of the great challenges in solid mechanics. In particular, at high temperatures material may deform even at low stresses, a deformation mode known as deformation creep. One of the microstructural mechanisms that governs deformation creep is dislocation motion due to the absorption or emission of vacancies, which results in motion perpendicular to the glide plane, called dislocation climb. However, the importance of the dislocation network for the deformation creep remains far from being understood. In this study, a climb model that accounts for the dislocation network is developed, by solving the diffusion equation for vacancies in a region with a general dislocation distribution. The definition of the sink strength is extended, to account for the contributions of neighbouring dislocations to the climb rate. The model is then applied to dislocation dipoles and dislocation pile-ups, which are dense dislocation structures and it is found that the sink strength of dislocations in a pile-up is reduced since the vacancy field is distributed between the dislocations. Finally, the importance of the results for modelling deformation creep is discussed.  相似文献   

2.
3.
JLF-1钢高温循环变形后硬度与微观结构的数值关系   总被引:2,自引:0,他引:2       下载免费PDF全文
李怀林  杨文  杨启法 《物理学报》2009,58(13):338-S342
高温循环变形是结构材料性能降级的主要原因之一.用透射电子显微镜对低活化铁素体/马氏体钢——JLF-1钢低周疲劳样品的微观结构进行了分析,并测试了循环变形前后此钢显微维氏硬度的变化.为了掌握JLF-1钢性能在高温循环变形中的变化机理,依据位错理论,用最小二乘法对高温循环变形后的显微维氏硬度与微观结构进行了回归计算,得到了此钢显微维氏硬度与板条尺寸、位错胞尺寸、位错密度的数值关系. 关键词: 低活化铁素体/马氏体钢 循环变形 微观结构 显微维氏硬度  相似文献   

4.
Microstructure evolution is largely dominated by the internal stress fields that appear upon the appearance of inhomogeneous structures in a material. The hardening behaviour of metals physically originates from such a complex microstructure evolution. As deformation proceeds, statistically homogeneous distributions of dislocations in grains become unstable, which constitutes the driving force for the development of a pronounced dislocation substructure. The dislocation structure already appears at early stages of deformation due to the statistical trapping of dislocations. Cell walls contain dislocation dipoles and multipoles with high dislocation densities and enclose cell-interior regions with a considerably smaller dislocation density. The presence and evolution of such a dislocation arrangement in the material influence the mechanical response of the material and is commonly associated with the transient hardening after strain path changes. This contribution introduces a micromechanical continuum model of the dislocation cell structure based on the physics of the dislocation interactions. The approximation of the internal stress field in such a microstructure and the impact on the macroscopic mechanical response are the main items investigated here.  相似文献   

5.
A stochastic approach to dislocation dynamics is proposed that starts off from considering the geometrically necessary fluctuations of the local stress and strain rate caused by long-range dislocation interactions during plastic flow. On a mesoscopic scale, a crystal undergoing plastic deformation is thus considered an effective fluctuating medium. The auto- and cross-correlation functions of the effective stress and the plastic strain rate are derived. The influences of dislocation multiplication, storage and cross slip on the correlation functions are discussed. Various analogies and fundamental differences to the statistical mechanics of thermodynamic equilibrium are outlined. Application of the theory of noise-induced transitions to dislocation dynamics gives new insight into the physical origin of the spontaneous formation of dislocation structures during plastic deformation. The results demonstrate the importance of the strain-rate sensitivity in dislocation patterning.  相似文献   

6.
将辐照硬化理论与晶体塑性理论结合, 运用ABAQUS有限元分析软件模拟辐照后多晶铜的拉伸过程。分析辐照效应对材料屈服强度、硬化过程、晶体变形等力学性能的影响, 研究位错密度的演化及空间分布规律。数值模拟表明: 辐照效应提高多晶铜的屈服应力, 影响不同阶段的硬化和软化现象; 辐照剂量增大导致位错密度增殖总体变缓, 空间不均匀度增大; 晶体的塑性变形及晶体转动也受到辐照的影响, 在相同的应变条件下, 辐照剂量越大, 晶体塑性变形程度越小, 塑性变形分布不均匀度变大, 同时晶体转动程度及转动角离散度增大。  相似文献   

7.
Moving dislocations in II–VI semiconductors carry a large electric charge. This charge is not in thermal equilibrium, but is due to the sweeping up of electrons from point defects. Its movement produces a dislocation current during plastic deformation, and conversely, the application of an external field changes the flow stress. This paper reviews the structure and properties of these dislocations, the theory of their charge and the phenomena which are a consequence of the strong mutual interactions of the dislocation and electronic sub-systems in these crystals. The materials show a large photoplastic effect (a change in flow stress under illumination), and related effects due to the injection of electrons at an electrode. Deformation produces reversible changes in the conductivity, pulsed and continuous luminescence and the emission of electrons from the surface.  相似文献   

8.
磁致塑性效应下的位错动力学机制   总被引:1,自引:0,他引:1       下载免费PDF全文
李桂荣  王宏明  李沛思  高雷章  彭琮翔  郑瑞 《物理学报》2015,64(14):148102-148102
基于磁致塑性效应探讨了磁场作用下位错受力和运动机制, 对磁场下的位错动力学机制进行了定性和定量分析. 选择氧化铝纳米颗粒强化铝基复合材料为实验对象, 在不同磁感应强度下(0–3 T范围)对试样进行磁场处理. 结果表明, 随着磁感应强度增加, 位错密度提高, 表现出塑性变形特征. 分析认为, 磁场力不足以驱动位错运动, 位错增殖诱因在于磁致塑性效应, 即磁场改变了顺磁性位错芯与障碍间自由基对中的电子自旋状态, 促使自由基对从强键结合单线态向弱键结合三重态转化, 位错穿越障碍时所需能量减小, 退钉扎趋势明显; 位错运动中的限速环节是位错在障碍处的停留, 磁场诱发的电子激发和原子重排速度很快, 表现出磁场作用的高效性. 磁场起作用的临界磁感应强度约为3 T, 低于3 T时磁场作用随磁场强度增加而变得明显, 高于3 T 后磁场效果会减小. 计算得到3 T 时位错运动速度是10-3 m/s, 位错线长度比未加磁场时增加两个数量级, 位移与磁感应强度平方和磁场作用时间成正比. 实验和理论研究表明磁场具有改善材料塑性变形能力的显著作用.  相似文献   

9.
田圆圆  李甲  胡泽英  王志鹏  方棋洪 《中国物理 B》2017,26(12):126802-126802
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics(MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy(SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.  相似文献   

10.
We have performed a detailed study of the lattice distortions of InP wurtzite nanowires containing an axial screw dislocation. Eshelby predicted that this kind of system should show a crystal rotation due to the dislocation induced torque. We have measured the twisting rate and the dislocation Burgers vector on individual wires, revealing that nanowires with a 10-nm radius have a twist up to 100% larger than estimated from elasticity theory. The strain induced by the deformation has a Mexican-hat-like geometry, which may create a tube-like potential well for carriers.  相似文献   

11.
The present paper starts form the original Ginzburg-Landau-equations of superconductivity and the linear theory of elasticity for internal stresses as well as the experimental fact that the specific volume and the elastic constants vary throughout the superconducting phase. With the aid of phenomenological expressions for the free energy and the spontaneous deformation (superconductive magnetostriction) of a deformable type II superconductor, a general method is given for the determination of the interaction between the field of the order parameter, the magnetic field, and the field of the elastic deformations. For an isolated straight vortex-line and for a straight vortex-line in the neighbourhood of a dislocation of arbitrary character, formulas for the internal stresses are derived using first order perturbation theory (corresponding to first powers in the changes of specific volume and elastic constants).  相似文献   

12.
A deformation relief of the surface of a crystal is considered and simulated within the framework of the previously developed model of cellular and fragmented dislocation structures. The deformation relief has a steplike plateau-shaped character for cellular dislocation structures and a toothed character for fragmented dislocation structures. The results of simulation are compared with the data available in the literature regarding experimental investigations of surface deformation reliefs with the use of atomic-force and scanning tunneling microscopes.  相似文献   

13.
We consider the process by which a dislocation overcomes a double potential barrier in a thermally activated plastic deformation. We use the framework of reaction rates without taking into account the form of the barrier profile. In order to take into account the possible delay of the dislocation in the potential well we introduce the probability for overcoming the barrier with one jump and the probability for the dislocation to fall into the well. As a result we establish that the experimentally determined activation parameters of a plastic deformation not only depend significantly on the form of: the barrier, but also on the delay probability of the dislocation in the potential well, which in turn is determined by the mechanism by which the moving dislocation dissipates energy. Since the dissipation of energy by the dislocation and the delay of the dislocation in the well grow with temperature, it is possible to observe a temperature interval where the stress flow also grows with temperature.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 72–77, June, 1986.The author is grateful to V. S. Zotov for a fruitful discussion of this work and for valuable advice.  相似文献   

14.
第伍旻杰  胡晓棉 《物理学报》2015,64(17):170201-170201
本文利用分子动力学模拟方法研究了含纳米孔洞金属铝在[110]晶向高应变率单轴压缩下弹塑性变形的微观过程. 对比单孔洞和完整单晶的模型, 讨论了多孔金属的应力应变关系及其位错发展规律. 研究结果表明, 对于多孔模型的位错积累过程, 位错密度随应变的增加可大致分为两个线性阶段. 由同一个孔洞生成的位错在相互靠近过程中, 其滑移速度越来越小; 随着位错继续滑移, 源自不同孔洞的位错之间开始交叉相互作用导致应变硬化. 达到流变峰应力之后又由于位错密度增殖速率升高发生软化. 当应变增加到11.8%时, 所有孔洞几乎完全坍缩, 并观察到在此过程中有棱位错生成.  相似文献   

15.
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

16.
The plastic deformation of bulk nanotwinned copper with embedded cracks under tension has been explored by using molecular dynamics simulations. Simulation results show that the cracks mainly act as dislocation sources during the plastic deformation and occasionally as sinks at later stage. The dislocation pile-up, accumulation and transformation at twin boundaries (TBs) control the plastic hardening and softening deformations. The TB dislocation pile-up zone is estimated to be 5.6–8 nm, which agrees well with previous experimental and simulation results. Furthermore, it is found that the flow stress vs. dislocation density at the hardening stage follows the Taylor-type relationship.  相似文献   

17.
The evolution of dislocation structure in solid solutions of Cu-Al and Cu-Mn systems with different grain sizes and at different test temperatures is studied by means of transmission electron diffraction microscopy. The scalar density of dislocations is measured and its relationship to the flow stress of alloys is determined. Changes in the contribution from dislocation hardening to deformation resistance upon variations in the contributions associated with changes in grain size, solid-solution hardening, and test temperature are analyzed.  相似文献   

18.
刘清友  罗旭  朱海燕  韩一维  刘建勋 《物理学报》2017,66(10):107501-107501
Jiles-Atherton(J-A)模型在磁化建模领域应用广泛,但不同文献给出的J-A模型并不一致,致使采用不同表达式建立的塑性变形磁化模型存在多种版本,其正确性难以甄别.通过对无磁滞磁化方程、能量守恒方程和等效磁场强度方程的梳理与比较,发现原有模型中存在将磁化强度和无磁滞磁化强度混用、将不可逆磁化能量等效于全部的磁化能量、等效磁场强度中应力磁化项界定不清等问题.在此基础上,对上述方程进行了修正,推导了基于J-A模型的塑性变形磁化修正模型.将修正模型计算结果与原模型计算结果、相关文献中的试验结果进行对比,结果表明:与原有计算模型相比,修正模型计算结果的饱和磁化强度和剩余磁化强度随塑性变形增加而减小,矫顽力随塑性变形增大而增大,达到饱和磁化强度时的外磁场强度随塑性变形增大而增大的趋势有所减弱,更符合试验结果,可更准确地反映塑性变形对材料磁化的影响.  相似文献   

19.
Summary The structure and substructure changes in Al and dispersion-hardened Al alloy are studied after rapid deformation by explosion and slow conventional deformation (cross-rolling and compression) using X-ray diffraction analysis and transmission electron microscopy. Shock wave deformation generates a small dislocation density which does not produce any significant change in the microstructure as well as in the texture of Al and Al alloy containing a different concentration of Al2O3 particles (4 and 7%). After slow conventional deformation, in particular after cross-rolling, significant variations are observed due to the nonuniformly distributed high dislocation densities.  相似文献   

20.
In this paper, recent developments in the understanding of the dislocation-crack interaction and its relationship to the phenomena of crack tip deformation and fracture toughness are reviewed. An enhanced research activity in this area began with successful observations of the behavior of crack tip dislocations by various techniques, namely etch pits technique, X-ray topography and transmision electron microscopy. The advantages and limitations of these techniques are compared and the information obtained from these experiments are discussed. The results show that dislocations are emitted from a crack tip when the applied stress is sufficiently high. During crack propagation, dislocations are also generated from other bulk sources and the number of these dislocations relative to those from the crack tip may be an important parameter. The elastic theory of the interaction between dislocations and a crack is presented by considering the force on the dislocations. The theory is applied to derive a dislocation emission condition, which may be expressed in terms of a critical stress intensity factor. It is concluded that the dislocations emitted from a crack tip are repelled from the crack tip and this repulsive interaction is responsible for the formation of a dislocation-free zone. These dislocations shield the crack tip from the applied stress and hence contribute to an increase in the fracture toughness. The physical origin of the dislocation-free zone lies in the presence of a barrier to dislocation emission from the crack tip. One of the barriers to dislocation emission is the image stress. With the dislocation-free zone, the crack tip can maintain a finite stress intensity factor following crack tip deformation. The lattice theories of dislocation-crack interaction indicate that the results are consistent with those of the continuum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号