首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents the removal of Cd(II) from aqueous solution by the sorption process in the presence (sono-sorption) and absence (conventional method) of ultrasound. Batch experiments were conducted to study the main parameters such as sorbate concentration, amount of sorbent, contact time, and ultrasound intensity. In addition, the sorbate/sorbent concentration ratios were studied in two different ways: (a) in a constant sorbate concentration and variable amount of sorbent, (b) in a constant amount of sorbent and variable sorbate concentration. The results indicated that under proper conditions, there was a possibility to remove cadmium ion very fast and efficiently from aqueous solution. In addition, the intensity of ultrasound and the sorbate/sorbent concentration ratio were two important factors for the removal of this pollutant and therefore, this study was focused mostly on these two variables.  相似文献   

2.
Phenolic compounds have become a cause for worldwide concern due to their persistence, toxicity and health risks. This paper reports a three-step approach to remove 2-chlorophenol from dilute aqueous solution and compares each technique. The first step utilizes Horse Radish Peroxidase (HRP) in presence of hydrogen peroxide to oxidize this organic pollutant (enzyme treatment). For a more efficient removal of 2-chlorophenol, it is necessary to add the enzyme solution gradually to the contents of the reactor instead of rapid addition. The second step, involving ultrasonic waves eliminated 2-chlorophenol through hydroxyl radical generated by the cavitation process (sono-degradation). In the third step, a combination of ultrasonic waves and enzyme was used (sono-enzyme degradation). It should be mentioned that, the enzyme can be active in the presence of ultrasonic waves under the proper sonication. The degradation has been studied at different temperatures, intensities of irradiation, and concentrations of enzyme. The rate of degradation exhibited pseudo-first order behavior and the combination method was more effective than sonolysis and enzyme treatment individually.  相似文献   

3.
Removal of 2-chlorophenol by ultrasonic waves (sonolysis), inorganic catalyst, and a combination of the two processes was tested and compared with each technique. In sonolysis, 2-chlorophenol mostly degraded indirectly in the bulk of solution by the radicals produced in the cavitation process. In catalyst treatment, the removal was performed in the presence of Al2O3, TiO2 and CuO. The highest removal was achieved in the presence of TiO2 for this pollutant. In the combined method an enhancement was observed for the removal of 2-chlorophenol. This could be attributed primarily to the continuous cleaning and chemical activation of the catalyst by acoustic cavitation. The mass transfer between the liquid phase and the catalyst and also the surface area of the catalyst are accelerated by the ultrasonic waves. The removal of 2-chlorophenol was performed under different intensities of irradiation, temperatures and quantities of catalyst. Some experiments were conducted in the presence of a Fenton reagent. In kinetic point of view, the removal of pollutant showed a pseudo-first order behavior. The combined method had a higher rate coefficient than sonolysis and catalyst treatment individually. Under some conditions, the presence of ultrasound has increased the rate coefficient of removal to about 10 times that in the absence of ultrasound.  相似文献   

4.
The sorption of methylene blue as a basic dye onto cellulosic materials such as waste newspaper was examined kinetically in the presence of ultrasound (sono-sorption) and in its absence (conventional method). The effects of various experimental parameters such as the amount of sorbent, type of cellulosic sorbents, initial dye concentration, temperature, and contact time have been investigated using a batch sorption technique. The information obtained can be used for treating effluents from the dye industry which deals with this kind of dye. The results show that as the amount of sorbent is increased, the dye removal in conventional method increases accordingly. In case of sono-sorption, it was stopped at specific amount of sorbent. More than 98% removal of the dye could be achieved in a very short period of time of sonication with respect to the conventional method. This behavior is related to the cavitation process which facilitates the removal of dye from aqueous solution. The method mentioned could be employed as a low cost alternative to the commercial activated carbon currently used in wastewater treatment for the removal of dyes.  相似文献   

5.
Li J  Mi C  Li J  Xu Y  Jia Z  Li M 《Ultrasonics sonochemistry》2008,15(6):949-954
Methyl orange (MO) molecules had been removed from aqueous solution by nano-TiO(2)/exfoliated graphite composites with the combination of ultrasound/adsorption/photocatalysis. The experimental results had showed that nano-TiO(2)/exfoliated graphite composites provided with the adsorptive capability of exfoliated graphite and the photocatalysis capability of nano-TiO(2) synchronously. It had been proved that the removal ratios related to the adsorption and photocatalysis capability of the composites and were influenced by US and UV irradiation, the reaction times, the reaction temperatures, the initial pH values, the dosages and the initial MO solution concentrations. Moreover, it had been illuminated that the combination was very effective and useful on removing MO molecules from aqueous solution.  相似文献   

6.
The present work reports a novel dual-pulse ultrasound enhanced electrochemical degradation (US-ECD) process that synchronizes alternatively ultrasound pulses and potential pulses to degrade nitrobenzene in aqueous solution with a high percentage degradation and low energy consumption. In comparison to the test results generated from the conventional US-ECD and original electrochemical degradation (ECD) process, the dual-pulse US-ECD process increased degradation percentages to nitrobenzene by 2% and 17%, respectively, while energy used in the pulse process was only about 46.5% of that was used in the conventional US-ECD process. Test results demonstrated a superior performance of the dual-pulse US-ECD process over those of other conventional ones. Impacts of pulse mode, initial pH value, cell voltage, supporting electrolyte concentration and ultrasonic power on the process performances were investigated. With operation conditions optimized in the study at pH = 3.0, cell voltage = 10 V, ultrasonic power = 48.84 W, electrolyte concentration = 0.1 M and an experiment running time of 30 min, the percentage degradation of nitrobenzene could reach 80% (US pulse time = 50 ms and ECD pulse time = 50 ms). This process provided a reliable and effective technical approach to degrade nitrobenzene in aqueous solution and significantly reduced energy consumption in comparison to the conventional US-ECD or original ECD treatment.  相似文献   

7.
Decolorization of the azo dye C.I. Reactive Black 5 (RB5) in solution by a combination of sonolysis and ozonation was investigated. The results showed that the optimum pH for the reaction was 11.0, and both lower and higher pH decreased the decolorization rate. Increasing the initial concentration of RB5 led to a decreasing decolorization rate. Under the experimental conditions, the decolorization rate increased with an increase in temperature. The decolorization of RB5 followed pseudo-first-order reaction kinetics. Based on the decolorization rate constants obtained at different temperatures within the range 287-338K and the Arrhenius equation, the apparent activation energy (E(a)) was calculated to be 11.2kJmol(-1). This indicated that the reaction has little dependence on temperature. The color decay was considerably faster than the decrease in total organic carbon (TOC), which was attributed to the ease of chromophore destruction. Hence the efficiency of decolorization was 84% compared with 4% of TOC removal after 5min reaction. Additionally, muconic acid, (2Z)-pent-2-enedioic acid and maleic acid were identified as main oxidation products by gas chromatography coupled with mass spectrometry (GC-MS) after 150min of reaction.  相似文献   

8.
The decolorization of reactive dye C.I. Reactive Blue 19 from aqueous solution was studied by using ultrasound, activated carbon and combined ultrasound/activated carbon. The combined effects of independent variables, such as ultrasound power, temperature, time, activated carbon concentration, dye concentration and initial pH were investigated on the decolorization by using the central composite design. The decolorization of RB 19 was modelled statistically and optimized by means of the Matlab computer software. The decolorization were accomplished at optimum conditions by using ultrasound, activated carbon and combined ultrasound/activated carbon as 36%, 91% and 99.9%, respectively. The application of ultrasonic irradiation was found to be beneficial for decolorization of RB 19 from aqueous solution by adsorption.  相似文献   

9.
10.
The dead needles of Aleppo pine (Pinus halepensis) were tested as a possible sorbent for the removal of malachite green from aqueous solutions in the absence and presence of ultrasound. Batch process was employed for sorption kinetic and equilibrium studies. Sorption experiments indicated that the sorption capacity was dependent of operating variables. Both the rate and the amount of malachite green sorption are markedly increased in the presence of the ultrasonic field. The dye removal with the assistance of ultrasound was enhanced with the increase of sorbate initial concentration and temperature, and with the decrease of sorbent dosage and ionic strength. The combination of stirring and ultrasound leads to an improvement of the removal of dye. The sorption kinetics was controlled by the intraparticle diffusion. The intraparticle diffusion coefficient increased 1.7 times in the presence of ultrasound and up to 3.6 times in the combined process. The sorption capacity, estimated according to the Freundlich model, indicates that ultrasound enhanced the sorption properties of the sorbent. The effect of ultrasound on the improvement of dye sorption is due to a variety of physical and mechanical effects as well as to thermal properties. The combination of ultrasound and stirring for the sorption process was shown to be of interest for the treatment of wastewaters contaminated with malachite green.  相似文献   

11.
Mechanisms of the formation of additional capacity of sorbent in sorption experiments of nitric acid and the separation of acid and salt in solution are studied using mathematical modeling. A method for the calculation of the dielectric constant and the ratio of concentrations of molecules and electrolyte ions in the inner layer of the sorbent is proposed. A mathematical model is constructed, simulation results are presented, and their comparison with experimental data is performed.  相似文献   

12.
Various active chemical species such as hydroxyl radicals, oxygen radical, hydrogen peroxide and ozone etc. can be produced by pulsed discharge. These active species can remove organic pollutants from the aqueous phase effectively. In present work pulsed discharge was formed on the pinhole of an insulating plate which was inserted between two plate electrodes. The characteristic of methyl orange decoloration by the discharge was investigated. The results of experimentation showed that peak voltage, pulsed frequency, initial solution conductivity and gas species impact the decoloration rate of the methyl orange (MO) significantly. The decoloration rate of MO solution is increased with increasing of the peak voltage, pulsed frequency, and decreasing initial solution conductivity. When the MO solution was treated with different gases bubbling, different decoloration rate was obtained and the order of decoloration rate is: oxygen > air > nitrogen.  相似文献   

13.
Degradation of C.I. Direct Black 168 from aqueous solution using Fenton-like reactions combining ultrasound was investigated. In the presence of H2O2, the effect of the heterogeneous catalysts, such as fly ash, kaolinite or diatomaceous earth on the degradation of Direct Black 168 was observed under ultrasound. The fly ash was the most efficient catalyst. It is apparent that ultrasound can prompt the reaction to take place and give in higher degradation. In the combination of ultrasound and fly ash/H2O2, the effect of different system variables namely concentration of the dye, dosage of fly ash, concentration of H2O2, pH of solution and the addition of NaCl were studied. 99.0% removal ratio was achieved at initial concentration 100 mg/L, pH 3.0, and dosage of fly ash 2.0 g/L, as well as 2.94 mM H2O2. NaCl exhibited only a minor effect on the dye removal.  相似文献   

14.
The use of two activated carbon fibres, one laboratorial sample prepared from a commercial acrylic textile fibre and one commercial sample of Kynol®, as prepared/received and modified by reaction with powdered sulfur and H2S gas in order to increase the sulfur content were studied for the removal of mercury from aqueous solution and from flue gases from a fluidized bed combustor. The sulfur introduced ranged from 1 to 6 wt.% depending on the method used. The most important parameter for the mercury uptake is the type of sulfur introduced rather than the total amount and it was found that the H2S treatment of ACF leads to samples with the highest mercury uptake, despite the lower sulfur amount introduced. The modified samples by both methods can remove HgCl2 from aqueous solutions at pH 6 within the range 290-710 mg/g (ACF) which can be favourably compared with other studies already published. The use of a filter made with an activated carbon fibre modified by powdered sulfur totally removed the mercury species present in the flue gases produced by combustion of fossil fuel.  相似文献   

15.
This study investigates the use of ultrasonication as a pretreatment process and its effect on the adsorption characteristics of saccharin onto activated carbon (AC). Ultrasonic decomposition of saccharin was performed at a frequency of 500 kHz under argon and O2/N2 (20/80 vol%) atmospheres. Adsorption was carried out using a commercial activated carbon. The behavior of total organic carbon (TOC) during ultrasonication was investigated. Saccharin removal after 180 min of ultrasonication under Ar and O2/N2 atmospheres are 38% and 26%, respectively, while the amount of saccharin removed by activated carbon adsorption without US pretreatment is 40% after 16 h. After 16 h of AC adsorption with 180 min of ultrasonic pretreatment under Ar and O2/N2 atmospheres, both removal ratios increased to 75%. These results indicated that the pretreatment of sonication under O2/N2 leads to the increase in the amount of saccharin adsorbed on AC. On the other hand, the TOC removal by decomposition by ultrasound is not more than 5% in both Ar and O2/N2 atmospheres after 180 min ultrasonication. However, the TOC removal increased to 54% and 69% after 16 h of adsorption of saccharin pretreated by ultrasonication for 180 min under Ar and O2/N2 atmospheres, respectively. About 13% and 16% TOC removal in Ar and in O2/N2, respectively, were achieved due to adsorption of the by-products. It is considered that the improvement in TOC removal is also brought about by the formation of the by-products that were adsorbed onto AC.  相似文献   

16.
This paper reports an efficient and convenient removal of disperse blue 2BLN from aqueous solution by the combination of ultrasound and exfoliated graphite. The various affecting factors were studied. The removal ratio of disperse blue 2BLN is 96.9% for the initial concentration of 200 mg/L using 600 mg/L exfoliated graphite (exfoliation volume of 300 mL/g) at 45 degrees C within 120 min under ultrasound. The combination method was more effective than sonolysis or exfoliated graphite treatment individually.  相似文献   

17.
This study investigated systematically the removal of carbamazepine (CBZ) in solution using the combination of ultrasound and persulfate anions to identify the factors affecting the kinetics of the process. The effects of reaction time, initial persulfate anion concentration, initial CBZ concentration, ultrasonic power input, solution pH and temperature on CBZ removal efficiency were examined. The sulfate radical oxidation of CBZ in the presence of ultrasonic irradiation showed a significant synergistic effect on CBZ removal. It is found that up to 89.4% CBZ removal efficiency was achieved after 120 min reaction. The removal process of CBZ in solution could be described using pseudo-first-order kinetics. In this system, sulfate radicals (SO4) were considered to be the mainly oxidant to remove CBZ while ultrasound power input could affect CBZ removal efficiency significantly. Changing solution pH influenced the CBZ removal efficiency and the best performance would be achieved at pH 5.0.  相似文献   

18.
This paper presents the effect of ultrasound on the simultaneous removal of Cd2+ and Pb2+ ions from a binary aqueous solution in the presence of natural sorbent (sono-sorption method). The obtained results compare with the results of control method which was achieved in the absence of ultrasound. The experiments under sonication were carried out by 20 kHz apparatus. The effect of different parameters such as the amount of sorbent, contact time, temperature, and specially the competitive sorption of ions were considered for both methods. It is found that the sorption efficiency of Cd2+ was decreased in the presence of Pb2+. But, the presence of Cd2+ had a negligible effect on the removal of Pb2+. The results show that in the binary solution, the removal efficiency was higher in the presence of ultrasound than the control method. Both ions in binary solution can be removed to near completion with ultrasound. Two different multi-component isotherm equations based on the Langmuir isotherm were applied on the studied system to predict the sorption behavior of the components.  相似文献   

19.
At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution.

The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.  相似文献   


20.
This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH° value of 13.613 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号