共查询到16条相似文献,搜索用时 62 毫秒
1.
分子动力学模拟研究方解石表面润湿性反转机理 总被引:1,自引:0,他引:1
利用分子动力学模拟技术从分子尺度探究方解石表面润湿性反转机理.首先,研究方解石表面润湿性反转过程;而后,从原油分子-方解石表面与原油分子-原油分子/水分子相互作用两个方面系统揭示方解石表面润湿性反转机理.结果:(1)水分子能够驱离方解石表面弱吸附的非极性分子造成润湿性的改变,但不能驱离强吸附的极性分子使润湿性反转难以实现;(2)原油分子极性越强与方解石表面相互作用越强,极性分子与方解石表面之间主要为静电力,非极性分子与方解石表面之间主要为范德华力;(3)原油分子极性越相近分子之间的相互作用越强,分子极性相差越大分子之间的相互作用越弱.非极性分子之间主要是范德华力,极性分子之间主要是静电力;(4)原油分子在方解石表面和水分子的共同作用下形成乙酸-吡啶-水-甲苯-己烷的稳定吸附序列.本研究为靶向提高采收率技术的设计与应用提供理论基础. 相似文献
2.
根据吉木萨尔凹陷芦草沟组储层特征,利用分子动力学方法研究了不同润湿性石英狭缝表面吸附页岩油的特征.用甲基和羟基按照-CH3:-OH=100:0、 75:25、 50:50、 25:75、 0:100修饰石英表面以构造不同润湿性的表面,并构建10 nm裂缝模型,以研究其对C15H32页岩油的吸附特性.研究结果表明,通过调节修饰官能团的比例,成功构造了润湿角为122.0°、 116.5°、 92.5°、 82.6°、 65.4°的吸附模型.由于水分子与石英表面间的相互作用能变化剧烈,水分子在修饰的石英表面的吸附是导致润湿角不断改变的主要原因.(C15H32在甲基改性石英表面的第一吸附层峰值是羟基改性的石英表面的1.37倍,说明润湿性会导致吸附特征发生明显改变.)通过对游离态页岩油含量的计算发现,随着羟基改性程度的增加,游离态页岩油质量占比从68%逐渐增长到83.7%,说明表面的润湿性改造有利于页岩油的解吸进而提高页岩油开发能力. 相似文献
3.
4.
采用分子动力学模拟研究纳米尺度下壁面润湿性对毛细流动的影响,主要考虑纳米通道两侧壁面润湿性相同与不同两种情况。研究表明:两侧壁面润湿性相同条件下,毛细流动随着壁面润湿性增强而加快, 毛细高度随时间的变化早期偏离Lucas-Washburn理论,但后期与其预测符合。在纳米通道两侧壁面润湿性不同的情况下,液面会发生振荡,两侧壁面毛细高度也不相等,且液面振荡的幅度和两侧壁面毛细高度差都随着两侧壁面润湿性差异的增大而增大。基于能量转化分析,提出两侧壁面湿润性不同情况下纳米通道中毛细流动发生的条件以及毛细流动快慢的判别依据。研究结果加深了对纳米尺度下毛细流动机理的认识,并为相关工程应用提供理论参考。 相似文献
5.
为了研究水驱油藏中原油极性物质的吸附机理及其对油藏表面润湿性的影响,构建以石英为代表的砂岩岩石骨架模型,己烷为代表的非极性物质模型和以甲苯、胶质和沥青质为代表的极性物质模型,运用分子模拟方法研究4种原油组分和水分子在砂岩油藏表面竞争吸附过程和润湿状态。结果表明:水与4种原油组分在石英矿物表面竞争吸附时,原油中的非极性物质会比极性物质更加容易脱附。极性物质会随着时间的变化逐渐吸附在矿物表面,非极性的物质会随着时间变化逐渐远离矿物表面。吸附过程中静电力起吸附作用,范德华力起排斥作用。最后结合润湿性实验结果,从机理上解释了不同原油组成对润湿性的影响,即原油组分中极性物质含量越高,胶质沥青质含量越大,岩石表面油湿性越大,且水驱过程中润湿性向亲水方向变化越难。结论对提升水驱油藏采收率影响因素的认识有重要意义。 相似文献
6.
本文用第一性原理平面波赝势方法模拟研究了手性单壁碳纳米管与氢分子的相互作用,考察了碳纳米管直径对储氢性能的影响。对单壁碳纳米管储氢的模拟结果表明: (1)物理吸附时,H2可以吸附在空腔内,也可以吸附在管与管之间的空隙中,纳米管内部的氢吸附力均高于管外,而“完好无损”的H2分子不能够穿过管壁而进入管内。(2)化学吸附时,碳纳米管对氢的吸附首先出现在管的边缘附近,碳纳米管局部会发生形变,SWCNTs的张力会随C-H键的增加而增大,系统不稳定。(3)随着直径的增加,纳米管内、外的氢吸附力差异减小。 相似文献
7.
本文用第一性原理平面波赝势方法模拟研究了手性单壁碳纳米管与氢分子的相互作用,考察了碳纳米管直径对储氢性能的影响.对单壁碳纳米管储氢的模拟结果表明:(1)物理吸附时,H2可以吸附在空腔内,也可以吸附在管与管之间的空隙中,纳米管内部的氢吸附力均高于管外,而“完好无损”的H2分子不能够穿过管壁而进入管内.(2)化学吸附时,碳纳米管对氢的吸附首先出现在管的边缘附近,碳纳米管局部会发生形变,SWCNTs的张力会随C-H键的增加而增大,系统不稳定.(3)随着直径的增加,纳米管内、外的氢吸附力差异减小. 相似文献
8.
用分子动力学模拟研究石墨狭缝中甲烷的吸附,考察狭缝宽度和温度对甲烷吸附的影响.模拟发现甲烷在石墨狭缝中出现分层现象,吸附层中甲烷具有类液特征,第一吸附层内甲烷中总有两个氢原子的连线与另外两个氢原子的连线分别位于平行于狭缝壁的两个平面内,游离层中甲烷呈现气体的特征;碳原子间的平均作用势说明吸附层中甲烷分子间结合能力大于游离层,吸附态是甲烷在石墨狭缝中的主要赋存形式之一;伦敦力以及由吸附层净电荷产生的电场力是甲烷吸附和分层的主要原因;甲烷的吸附量随狭缝宽度增大或温度升高而减少,当狭缝宽度小于16.46Å时,甲烷仅以吸附形态存在.甲烷在第一吸附层中的扩散能力最弱、游离层中最强,甲烷扩散系数随狭缝宽度的增大或温度的升高而增大. 相似文献
9.
10.
微尺度系统传热具有较小的热惯性和较快的热响应,在控制传热方面具有独到的优势.本文利用分子动力学方法研究了纳米通道中壁面温度及壁面润湿性不同时,静态流体和动态流体下界面热阻的变化规律.结果表明,在静态流体中,壁面润湿性的增强会显著降低界面热阻,对于温度不同的壁面,当润湿性较弱时,可以观察到高温壁面处的界面热阻高于低温壁面处,反之,当润湿性较强时,壁面温度对界面热阻的影响较小;对流体区域施加外力使流体流动,结果显示外力的增加能有效提高系统的热通量,流体温度升高.当润湿性较弱时,外力的增大能显著减低界面热阻,而随着壁面润湿性增强,外力对界面热阻的影响逐渐减小.此外,本文将界面热阻与壁面吸附流体分子数量相联系,发现在静态流体中,界面热阻值与壁面吸附流体分子的数量呈负相关;而在动态流体中,外力的变化对吸附分子数量的影响较小,壁面润湿性的强弱是影响壁面吸附流体分子的主要影响因素. 相似文献
11.
建立了基于分子力学计算方法的分子模拟手段,用于研究羟基乙叉二膦酸(HEDP)在方解石{104}表面的吸附特性.分子模拟三维吸附图像显示,HEDP中的膦酸基团中的氧原子具有强烈的负电性,能与晶体表面的阳离子产生强烈的静电吸引作用,形成“立体匹配”吸附结构.计算结果显示,HEDP在方解石面上、台阶和扭折点位置的平均吸附能依次约为-5.2eV,-7.0eV和-23.5eV,表明HEDP强烈地吸附到扭折点位置上,从而影响和抑制台阶的生长.
关键词:
分子模拟
方解石
阻垢剂
表面吸附 相似文献
12.
13.
采用粗粒化聚乙烯醇模型,应用分子动力学方法模拟熔融态聚合物经过缓慢冷却、局部结晶形成半晶态聚合物的过程.静态结构因子的演变显示出在结晶初期小角散射强度的增大先于布拉格峰的出现,这与小角/大角X射线散射实验现象相一致.模拟得到的半晶态聚合物呈现为折叠链构成的晶区与非晶区交杂在一起的结构形态,与缨状微束结构模型相一致.研究发现在不同的冷却阶段具有不同的有序结构形成机制.从结晶温度到玻璃化温度的凝固过程中,存在分子链的伸展和伸直分子链之间平行排列两种形式的结构转变;而在玻璃化温度之后,材料的活性只允许调整伸直分子链之间的相对排列位置. 相似文献
14.
液滴在润湿梯度表面运动的分子动力学模拟 总被引:1,自引:0,他引:1
本文进行了液滴在不同润湿梯度表面运动的分子动力学模拟,通过改变Lennard-Jones(LJ)势参数来实现表面的不同润湿性。模拟结果表明在润湿梯度差为10°的界面上,疏水表面的液滴运动更快,达到最终界面所需时间最短,并且液滴运动方向距离最远。当润湿梯度差为20°和30°时,液滴在疏水表面工况的运动速度与从疏水跨越到亲水的工况之间的差距越来越小,并且液滴在从疏水跨越到亲水的工况达到了最远的运动距离。同时,润湿梯度差的增加也引起了液滴运动速度的增大。 相似文献
15.
提出一种计算热导率的非平衡分子动力学(NEMD)方法,通过构造均匀内热源获得抛物线形温度分布,并基于Fourier导热定律计算热导率,与Müller-Plathe发展的反扰动非平衡分子动力学(RNEMD)方法相比,不仅具有能量动量守恒和收敛性好的优点,还克服了常规NEMD方法中热冷源区域存在局域热力学非平衡的问题,并有模拟系统温差影响小的特点.对液态氩的热导率进行模拟并与RNEMD方法的模拟结果进行对比. 相似文献
16.
Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations. 相似文献