首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, based on the three-dimensional flow theory of plasticity, the fundametal equations for plane strain problem of elastic-perfectly plastic solids are presented. By using these equations the elastic-plastic fields near the crack tip growing step-by-step in an elastic incompressible-perfectly plastic solid are analysed.The first order asymptotic solutions for the stress field and velocity fields near the crack tip are obtained. The solutions show the evolution process of elastic unloading domain and the development process of central fan domain and reveal the possibility of the presence of the secondary plastic domain. The second order asymptotic solution for stress field is also presented.  相似文献   

2.
考虑材料的黏性效应建立了Ⅱ型动态扩展裂纹尖端的力学模型,假设黏性系数与塑性等效应变率的幂次成反比,通过分析使尖端场的弹、黏、塑性得到合理匹配,并给出边界条件作为扩展裂纹定解的补充条件,对理想塑性材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了Ⅱ型裂纹数值解的性质随各参数的变化规律.分析表明应力和应变均具有幂奇异性,对于Ⅱ型裂纹,裂尖场不含弹性卸载区.引入Airy应力函数,求得了Ⅱ型准静态裂纹尖端场的控制方程,并进行了数值分析,给出了裂纹尖端的应力应变场.当裂纹扩展速度(M→0)趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式.  相似文献   

3.
Singular stress and strain fields are found at the tip of a crack growing steadily and quasi-statically into an elastic-plastic strain-hardening material. The material is characterized byJ2 flow theory together with a bilinear effective stress-strain curve. The cases of anti-plane shear, plane stress and plane strain are each considered. Numerical results are given for the order of the singularity, details of the stress and strain-rate fields, and the near-tip regions of plastic loading and elastic unloading.  相似文献   

4.
High-speed motion-picture photography and an optical method of stress analysis have been used to study the distribution of elastic stress fields at the tip of a crack growing at a fast rate. The existence of several specific properties of the field characteristic of fast crack propagation rates has been established, and the results obtained are used to explain the branching of cracks.The authors convey their thanks to G. I. Barenblatt for sponsoring this work.The authors convey their thanks to G. I. Barenblatt for sponsoring this work.  相似文献   

5.
扩展裂纹尖端弹塑性场   总被引:1,自引:0,他引:1  
本文通过对幂硬化材料中平面应变Ⅰ型裂纹的扩展过程进行精细的弹塑性有限元计算,给出扩展裂纹尖端附近环形区域内弹塑性场的分布。首次提出适用于扩展裂纹尖端环形区域的三项解。其中旨项为HRR奇异解;第二项反映三轴应力的强弱;第三项与HRR奇异性项相比还含有线性项,并指出:扩展裂纹尖端环形区域弹塑性应力应变场的分布和强弱可由J-Q-k_2三参量刻划。此结论适用于不同试样几何,不同材料硬化指数以及由小范围屈服至全面屈服的不同屈服程度。  相似文献   

6.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

7.
王自强 《力学学报》1990,22(3):293-301
本文利用理想塑性固体平面应变问题的基本方程,分析了可压缩理想塑性体中逐步扩展裂纹顶端的弹塑性场,得到了关于应力的渐近场,分析了弹性卸载区的演变过程和修正的中心扇形区的发展过程,预示了出现二次塑性区的可能性,弹性可压缩性的影响明显表现在经典的中心扇形区必需加以修正,垂直于板面方向的应力偏量不再为零,而且随着新裂纹面的形成,裂纹前方的均匀应力场和紧连着的修正的中心扇形区的应力偏量将发生变化,这种变化是由于垂直于板面方向的应力偏量发生变化造成的。  相似文献   

8.
Cracks in ductile single crystals are analyzed here for geometries and orientations such that two-dimensional states of anti-plane shear constitute possible deformation fields. The crystals are modelled as ideally plastic and yield according to critical resolved shear stresses on their slip systems. Restrictions on the asymptotic forms of stress and deformation fields at crack tips are established for anti-plane loading of stationary and quasistatically growing cracks, and solutions are presented for several specific orientations in f.c.c. and b.c.c. crystals. The asymptotic solutions are complemented by complete elastic-plastic solutions for stationary and growing cracks under small scale yielding, based on previous work by Rice (1967, 1984) and Freund (1979). Remarkably, the plastic zone at a stationary crack tip collapses into discrete planes of displacement and stress discontinuity emanating from the tip; plastic flow consists of concentrated shear on the displacement discontinuities. For the growing crack these same planes, if not coincident with the crack plane, constitute collapsed plastic zones in which velocity and plastic strain discontinuities occur, but across which the stresses and anti-plane displacement are fully continuous. The planes of discontinuity are in several cases coincident with crystal slip planes but it is shown that this need not be the case, e.g., for orientations in which anti-plane yielding occurs by multi-slip, or for special orientations in which the crack tip and the discontinuity planes are perpendicular to the activated slip plane.  相似文献   

9.
对幂硬化弹塑性材料-刚性材料界面上裂纹以定常方式扩展的Ⅲ型问题进行弹塑性渐近分析,给出裂纹尖端的应力,应变和位移场解。通过数值计算,考察了不同Mach数以及裂纹尖端混合参数对场解的构造以及应力,应变分布的影响,为给出合理的断裂准则提供理论依据。  相似文献   

10.
An interfacial crack with electrically permeable surfaces between two dissimilar piezoelectric ceramics under electromechanical loading is investigated. An exact expression for singular stress and electric fields near the tip of a permeable crack between two dissimilar anisotropic piezoelectric media are obtained. The interfacial crack-tip fields are shown to consist of both an inverse square root singularity and a pair of oscillatory singularities. It is found that the singular fields near the permeable interfacial crack tip are uniquely characterized by the real valued stress intensity factors proposed in this paper. The energy release rate is obtained in terms of the stress intensity factors. The exact solution of stress and electric fields for a finite interfacial crack problem is also derived.  相似文献   

11.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

12.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

13.
Many important applications of crack mechanics involve self-equilibrating residual or thermal stress fields. For these types of problems, the traditional fracture mechanics approach based on the superposition principle has ignored the effect of crack surface contact when the crack-tip propagates into the residual compressive region. Contact between the crack faces and the wedging action are responsible for subsequent crack-tip reopening, which often leads to a much larger mode I stress intensity factor. In this study, an analytical approach is used to study the effect of crack face contact for a period array of collinear cracks embedded in several typical residual stress fields. It is found that the nonlinear contact between crack surfaces dominates the cracking behavior in residual/thermal stress fields, which is responsible for crack coalescence.  相似文献   

14.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

15.
A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.  相似文献   

16.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

17.
This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switch-ing by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numer-ical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric compos-ites by altering the electric field.  相似文献   

18.
The effect of repeated loading from mechanically simulated hull slamming on foam core sandwich composites was investigated utilizing a novel technique that simultaneously measured temperature and displacement while cyclic loading occurred. Thermoelastic Stress Analysis (TSA) and Digital Image Correlation (DIC) techniques were combined using a single infrared camera for characterization of the foam core. Improved stress fields with TSA results were found through deformation compensation. Initial work approximating hull slamming conditions mechanically utilizing a custom device were performed. Mechanically loading offers several benefits over water impact investigations, including easy access to the sample during the slamming event, an unobstructed optical path, and accelerated testing. Evolving stress fields under long-duration, repeated simulated hull slamming loading were observed around a growing delamination crack between the foam core and skin.  相似文献   

19.
Mixed-mode dynamic crack growth along an arbitrarily smoothly varying path in functionally graded materials (FGMs) under thermo-mechanical loading is studied. The property gradation in FGMs is considered by varying shear-modulus, mass density, thermal conductivity and coefficient of thermal expansion exponentially along the gradation direction. Asymptotic analysis in conjunction with displacement potentials is used to develop the stress fields around propagating cracks in FGMs. Asymptotic temperature fields are developed first for the exponential variation of thermal conductivity and later these temperature fields are used to derive thermo-mechanical stress fields for a curving crack in FGMs. Using these thermo-mechanical stress fields, various components of the stresses are developed and the effect of curvature parameters, temperature and gradation on these stresses are discussed. Finally, using the minimum strain energy density criterion, the effect of curvature parameters, crack-tip speeds, non-homogeneity values and temperature gradients on crack growth directions are determined and discussed.  相似文献   

20.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号