首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The design and synthesis of a new 2-O-alklyated benzamide α-helix mimetic is described. Comparison with regioisomeric 3-O-alkylated benzamides permits a preliminary evaluation of the role that mimetic curvature has in determining molecular recognition properties.  相似文献   

2.
Thermodynamics of curved boundary layers is used to study surface properties of Lennard–Jones fluids and an equation is obtained for the surface tension of the spherical interfaces. The work of cavity formation inside a fluid is utilised to calculate the surface tension. The scaled particle theory (SPT) equation of Pierotti and Stillinger are properly modified. The calculations by the modified Stillinger equation predicts the surface tension in any radius of curvature and the results are in good agreement with the experimental data. But for Pierotti equation, due to low sensitivity to temperature, good agreement obtained only at low temperatures.  相似文献   

3.
U.Deva Priyakumar 《Tetrahedron》2004,60(13):3037-3043
Density functional theory (B3LYP) calculations with double and triple-ζ quality basis sets were performed on the Li+ and Na+ π-complexes of corannulene 2, sumanene 3CH2, heterosumanenes 3X, triphenylene 4 and heterotrindenes 5X. The metal ions bind to both convex and concave faces of buckybowls, with a consistent preference to bind to the convex surface by about 1-4 kcal/mol. The metal ion complexation with the π-framework of the central six-membered ring span wider range compared to benzene, indicating the control of size, curvature and electronic perturbations over the strength of cation-π interactions. Computations show that the bowl-to-bowl inversion barriers are only slightly altered upon metal complexation, indicating the continuity of bowl-to-bowl inversion despite metal complexation. We have calculated the binding energies of model systems, triphenylene (4) and heterotrindenes (5X), which indicate that the interaction energies are controlled by electronic factors. While the inversion barrier is dependent mainly on the size of the heteroatom, the extent of binding is independent of the size of the atom or the bowl depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号