首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider tuples {N jk }, j = 1, 2, ..., k = 1, ..., q j , of nonnegative integers such that $$ \sum\limits_{j = 1}^\infty {\sum\limits_{k = 1}^{q_j } {jN_{jk} } } \leqslant M. $$ Assuming that q j j d?1, 1 < d < 2, we study how the probabilities of deviations of the sums $ \sum\nolimits_{j = j_1 }^{j_2 } {\sum\nolimits_{k = 1}^{q_j } {N_{jk} } } $ N jk from the corresponding integrals of the Bose-Einstein distribution depend on the choice of the interval [j 1,j 2].  相似文献   

2.
We investigate the regular convergence of the m-multiple series (*) $$\sum\limits_{j_1 = 0}^\infty {\sum\limits_{j_2 = 0}^\infty \cdots \sum\limits_{j_m = 0}^\infty {c_{j_1 ,j_2 } , \ldots j_m } }$$ of complex numbers, where m ≥ 2 is a fixed integer. We prove Fubini’s theorem in the discrete setting as follows. If the multiple series (*) converges regularly, then its sum in Pringsheim’s sense can also be computed by successive summation. We introduce and investigate the regular convergence of the m-multiple integral (**) $$\int_0^\infty {\int_0^\infty { \cdots \int_0^\infty {f\left( {t_1 ,t_2 , \ldots ,t_m } \right)dt_1 } } } dt_2 \cdots dt_m ,$$ where f : ?? + m → ? is a locally integrable function in Lebesgue’s sense over the closed nonnegative octant ?? + m := [0,∞) m . Our main result is a generalized version of Fubini’s theorem on successive integration formulated in Theorem 4.1 as follows. If fL loc 1 (?? + m ), the multiple integral (**) converges regularly, and m = p + q, where p and q are positive integers, then the finite limit $$\mathop {\lim }\limits_{v_{_{p + 1} } , \cdots ,v_m \to \infty } \int_{u_1 }^{v_1 } {\int_{u_2 }^{v_2 } { \cdots \int_0^{v_{p + 1} } { \cdots \int_0^{v_m } {f\left( {t_1 ,t_2 , \ldots t_m } \right)dt_1 dt_2 } \cdots dt_m = :J\left( {u_1 ,v_1 ;u_2 v_2 ; \ldots ;u_p ,v_p } \right)} , 0 \leqslant u_k \leqslant v_k < \infty } ,k = 1,2, \ldots p,}$$ exists uniformly in each of its variables, and the finite limit $$\mathop {\lim }\limits_{v_1 ,v_2 \cdots ,v_p \to \infty } J\left( {0,v_1 ;0,v_2 ; \ldots ;0,v_p } \right) = I$$ also exists, where I is the limit of the multiple integral (**) in Pringsheim’s sense. The main results of this paper were announced without proofs in the Comptes Rendus Sci. Paris (see [8] in the References).  相似文献   

3.
Consider a family $\mathcal{H}:= \{X_{j} =: f_{j}\cdot\nabla: j=1,\ldots , m\}$ of C 1 vector fields in ? n and let s∈?. We assume that for all p∈{1,…,s} and j 1,…,j p ∈{1,…,m} the horizontal derivatives $X_{j_{1}}X_{j_{2}}\cdots X_{j_{p-1}}f_{j_{p}}$ exist and are Lipschitz continuous with respect to the control distance defined by  $\mathcal{H}$ . Then we show that different notions of commutator agree. This involves an accurate analysis of some algebraic identities involving nested commutators which seem to have an independent interest. Our principal applications are a ball-box theorem, the doubling property, and the Poincaré inequality for Hörmander vector fields under an intrinsic “horizontal regularity” assumption on their coefficients.  相似文献   

4.
We consider the system ${-\Delta{u}_{j} + a(x)u_{j} = \mu_{j}u^{3}_{j} + \beta \sum_{k \neq j} u^{2}_{k}u_{j}}$ , u j > 0, j = 1, . . . , n, on a possibly unbounded domain ${\Omega \subset \mathbb{R}^{N}, N \leq 3}$ , with Dirichlet boundary conditions. The system appears in nonlinear optics and in the analysis of mixtures of Bose–Einstein condensates. We consider the self-focussing (attractive self-interaction) case ${\mu_{1}, \ldots, \mu_{n} > 0}$ and take ${\beta \in \mathbb{R}}$ as bifurcation parameter. There exists a branch of positive solutions with uj/uk being constant for all ${j, k \in \{1, \ldots, n\}}$ . The main results are concerned with the bifurcation of solutions from this branch. Using a hidden symmetry we are able to prove global bifurcation even when the linearization has even-dimensional kernel (which is always the case when n > 1 is odd).  相似文献   

5.
If $f\in L^{p}(\mathbb{R}^{d})$ is a bounded real valued continuous function which has a unique maximum or a unique minimum at a point $x_{0}\in \mathbb{R}^{d}$ and if the inverse image of the neighborhoods of f(x 0) shrinks regularly to x 0, then $\mathrm{ span }\{f^{m}(x-2^{-m}\varSigma_{i=1}^{d} j_{i} e_{i})\mid m\in\mathbb{N}, j_{i}\in\mathbb{Z}\}$ is a dense subset of $L^{p}(\mathbb{R}^{d}), 1\le p<\infty$ where f m (x)=f(x) m and {e i } is the natural basis of $\mathbb{R}^{d}$ . The result extends to all homogeneous groups, Riemannian symmetric spaces of noncompact type, Damek-Ricci spaces etc.  相似文献   

6.
7.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

8.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

9.
We study correlation bounds under pairwise independent distributions for functions with no large Fourier coefficients. Functions in which all Fourier coefficients are bounded by δ are called δ-uniform. The search for such bounds is motivated by their potential applicability to hardness of approximation, derandomization, and additive combinatorics. In our main result we show that $\operatorname{\mathbb {E}}[f_{1}(X_{1}^{1},\ldots,X_{1}^{n}) \ldots f_{k}(X_{k}^{1},\ldots,X_{k}^{n})]$ is close to 0 under the following assumptions:
  • the vectors $\{ (X_{1}^{j},\ldots,X_{k}^{j}) : 1 \leq j \leq n\}$ are independent identically distributed, and for each j the vector $(X_{1}^{j},\ldots,X_{k}^{j})$ has a pairwise independent distribution;
  • the functions f i are uniform;
  • the functions f i are of low degree.
  • We compare our result with recent results by the second author for low influence functions and to recent results in additive combinatorics using the Gowers norm. Our proofs extend some techniques from the theory of hypercontractivity to a multilinear setup.  相似文献   

    10.
    Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

    11.
    Let p be a prime and let $\varphi\in\mathbb{Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ be a symmetric polynomial, where  $\mathbb {Z}_{p}$ is the field of p elements. A sequence T in  $\mathbb {Z}_{p}$ of length p is called a φ-zero sequence if φ(T)=0; a sequence in $\mathbb {Z}_{p}$ is called a φ-zero free sequence if it does not contain any φ-zero subsequence. Motivated by the EGZ theorem for the prime p, we consider symmetric polynomials $\varphi\in \mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ , which satisfy the following two conditions: (i) every sequence in  $\mathbb {Z}_{p}$ of length 2p?1 contains a φ-zero subsequence, and (ii) the φ-zero free sequences in  $\mathbb {Z}_{p}$ of maximal length are all those containing exactly two distinct elements, where each element appears p?1 times. In this paper, we determine all symmetric polynomials in $\mathbb {Z}_{p}[x_{1},x_{2},\ldots, x_{p}]$ of degree not exceeding 3 satisfying the conditions above.  相似文献   

    12.
    Every subfield $ \mathbb{K} $ (φ) of the field of rational fractions $ \mathbb{K} $ (x 1,..., x n ) is contained in a unique maximal subfield of the form $ \mathbb{K} $ (ω). The element ω is said to be generating for the element φ. A subfield of $ \mathbb{K} $ (x 1,..., x n ) is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $ \mathbb{K} $ (x 1,..., x n ) G of a finite group G of automorphisms of the field $ \mathbb{K} $ (x 1..., x n ).  相似文献   

    13.
    In this paper we are concerned with the classification of the subsets A of ${\mathbb{Z}_p}$ which occur as images ${f(\mathbb{Z}_p^r)}$ of polynomial functions ${f:\mathbb{Z}_p^r\to \mathbb{Z}_p}$ , limiting ourselves to compact-open subsets (i.e. finite unions of open balls). We shall prove three main results: (i) Every compact-open ${A\subset \mathbb{Z}_p}$ is of the shape ${A=f(\mathbb{Z}_p^r)}$ for suitable r and ${f\in\mathbb{Z}_p[X_1,\ldots ,X_r]}$ . (ii) For each r 0 there is a compact-open A such that in (i) we cannot take r < r 0. (iii) For any compact-open set ${A\subset \mathbb{Z}_p}$ there exists a polynomial ${f\in\mathbb{Q}_p[X]}$ such that ${f(\mathbb{Z}_p)=A}$ . We shall also discuss in more detail which sets A can be represented as ${f(\mathbb{Z}_p)}$ for a polynomial ${f\in\mathbb{Z}_p[X]}$ in a single variable.  相似文献   

    14.
    This paper is concerned with the heat equation in the half-space ? + N with the singular potential function on the boundary, (P) $\left\{ \begin{gathered} \frac{\partial } {{\partial t}}u - \Delta u = 0\operatorname{in} \mathbb{R}_ + ^N \times (0,T), \hfill \\ \frac{\partial } {{\partial x_N }}u + \frac{\omega } {{|x|}}u = 0on\partial \mathbb{R}_ + ^N \times (0,T), \hfill \\ u(x,0) = u_0 (x) \geqslant ()0in\mathbb{R}_ + ^N , \hfill \\ \end{gathered} \right. $ where N ?? 3, ?? > 0, 0 < T ?? ??, and u 0 ?? C 0(? + N ). We prove the existence of a threshold number ?? N for the existence and the nonexistence of positive solutions of (P), which is characterized as the best constant of the Kato inequality in ? + N .  相似文献   

    15.
    The embedding of the anisotropic spaces $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right)$ with mixed norm is studied. We establish some necessary and sufficient conditions of the embedding $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right) \subset L^{q_1 , \ldots ,q_n } \left( {\mathbb{R}^n } \right)$ .  相似文献   

    16.
    We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

    17.
    In this paper,the relationship between the extended family and several mixing properties in measuretheoretical dynamical systems is investigated.The extended family eF related to a given family F can be regarded as the collection of all sets obtained as"piecewise shifted"members of F.For a measure preserving transformation T on a Lebesgue space(X,B,μ),the sets of"accurate intersections of order k"defined below are studied,Nε(A0,A1,...,Ak)=n∈Z+:μk i=0T inAiμ(A0)μ(A1)μ(Ak)ε,for k∈N,A0,A1,...,Ak∈B and ε0.It is shown that if T is weakly mixing(mildly mixing)then for any k∈N,all the sets Nε(A0,A1,...,Ak)have Banach density 1(are in(eFip),i.e.,the dual of the extended family related to IP-sets).  相似文献   

    18.
    A function ${u : X \to \mathbb{R}}$ defined on a partially ordered set is quasi-Leontief if, for all ${x \in X}$ , the upper level set ${\{x\prime \in X : u(x\prime) \geq u(x)\}}$ has a smallest element; such an element is an efficient point of u. An abstract game ${u_{i} : \prod^{n}_{j=1} X_j \to \mathbb{R}, i \in \{1, \ldots , n\}}$ , is a quasi-Leontief game if, for all i and all ${(x_{j})_{j \neq i} \in \prod_{j \neq i} X_{j}, u_{i}((x_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ is quasi-Leontief; a Nash equilibrium x* of an abstract game ${u_{i} :\prod^{n}_{j=1} X_{j} \to \mathbb{R}}$ is efficient if, for all ${i, x^{*}_{i}}$ is an efficient point of the partial function ${u_{i}((x^{*}_{j})_{j \neq i};-) : X_{i} \to \mathbb{R}}$ . We establish the existence of efficient Nash equilibria when the strategy spaces X i are topological semilattices which are Peano continua and Lawson semilattices.  相似文献   

    19.
    Given a prime number l, a finite set of integers S?=?{a 1, ...,a m } and m many l-th roots of unity $\zeta_l^{r_i}, i=1, \ldots ,m$ we study the distribution of primes p in ?(ζ l ) such that the l-th residue symbol of a i with respect to p is $\zeta_l^{r_i}, \mbox{ for all } i$ . We find out that this is related to the degree of the extension $\mathbb{Q}(a_1^{\frac{1}{l}}, \ldots ,a_m^{\frac{1}{l}})/\mathbb{Q}$ . We give an algorithm to compute this degree. Also we relate this degree to rank of a matrix obtained from S?=?{a 1, ...,a m }. This latter argument enables one to describe the degree $\mathbb{Q}(a_1^{\frac{1}{l}}, \ldots ,a_m^{\frac{1}{l}})/\mathbb{Q}$ in much simpler terms.  相似文献   

    20.
    Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号