首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A newly proposed theory [R. Laghaei et al., J. Chem. Phys. 124, 154502 (2006)] was extended to polyatomics and applied to compute the density and temperature dependence of the effective site diameters of carbon disulfide fluids. The generic van der Waals (GvdW) theory was also extended to polyatomics in order to calculate the GvdW parameters and the molecular free volume using the effective site diameters as the repulsion-attraction separation distance. A three-site Lennard-Jones potential available in the literature was slightly modified and used in Monte Carlo simulations to obtain the functions appearing in the effective site diameter and GvdW expressions. The interaction potential was examined to reproduce the fluid phase thermodynamic properties using Gibbs ensemble Monte Carlo simulations and also the equation of state in the liquid phase using NVT Monte Carlo (NVT-MC) simulations. Comparison between the simulation results and experimental data shows excellent agreement for the densities of the coexisting phases, the vapor pressure, properties of the predicted critical point, and the equation of state. NVT-MC simulations were performed over a wide range of densities and temperatures in sub- and supercritical regions to compute the effective site diameters, the GvdW parameters, and the molecular free volume. The molecular structure in terms of the site-site pair correlation functions, the density dependence of the effective site diameters, and the density and temperature dependence of the GvdW parameters and molecular free volume were studied and discussed. The GvdW parameters were fitted to empirical expressions as a function of density and temperature. The computed molecular free volume will be used in future investigations to study the transport properties of carbon disulfide.  相似文献   

2.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule.  相似文献   

3.
The liquid-vapor phase diagram and surface tension for hard-core Yukawa potential with 4相似文献   

4.
Molecular dynamics simulations have been carried out to obtain the interfacial and coexistence properties of soft-sphere attractive Yukawa (SAY) fluids with short attraction range, κ = 10, 9, 8, 7, 6, and 5. All our simulation results are new. These data are also compared with the recently reported results in the literature of hard-core attractive Yukawa (HAY) fluids. We show that the interfacial and coexistence properties of both potentials are different. For the surveyed systems, here we show that all coexistence curves collapse into a master curve when we rescale with their respective critical points and the surface tension curves form a single master curve when we plot γ* vs. T/T(c).  相似文献   

5.
We have analyzed the currently available simulation results as well as performed some additional Monte Carlo simulation for the hard-core attractive Yukawa fluid in order to study its corresponding state behavior. We show that the values of reduced surface tension map onto the master curve and a universal equation of state can be obtained in the wide range of the attractive Yukawa tail length after a certain rescaling of the number density. Some comparisons with other nonconformal potentials are presented and discussed.  相似文献   

6.
Canonical Monte Carlo Simulations have been performed to calculate liquid-vapor properties of the associating square well and Lennard-Jones fluids with one and two sites. Simulations were carried out by using several values of reduced temperatures and association energies. The orthobaric densities, as well as the surface tension of associating square well fluids, were calculated and compared with those reported previously in literature; a good agreement was found among them. Results of surface tension of two-sites associating Lennard-Jones fluids are presented here for the first time.  相似文献   

7.
A novel test-area (TA) technique for the direct simulation of the interfacial tension of systems interacting through arbitrary intermolecular potentials is presented in this paper. The most commonly used method invokes the mechanical relation for the interfacial tension in terms of the tangential and normal components of the pressure tensor relative to the interface (the relation of Kirkwood and Buff [J. Chem. Phys. 17, 338 (1949)]). For particles interacting through discontinuous intermolecular potentials (e.g., hard-core fluids) this involves the determination of delta functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By contrast we employ a thermodynamic route to determine the surface tension from a free-energy perturbation due to a test change in the surface area. There are important distinctions between our test-area approach and the computation of a free-energy difference of two (or more) systems with different interfacial areas (the method of Bennett [J. Comput. Phys. 22, 245 (1976)]), which can also be used to determine the surface tension. In order to demonstrate the adequacy of the method, the surface tension computed from test-area Monte Carlo (TAMC) simulations are compared with the data obtained with other techniques (e.g., mechanical and free-energy differences) for the vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a discontinuous potential which is difficult to treat with standard methods. Our thermodynamic test-area approach offers advantages over existing techniques of computational efficiency, ease of implementation, and generality. The TA method can easily be implemented within either Monte Carlo (TAMC) or molecular-dynamics (TAMD) algorithms for different types of interfaces (vapor-liquid, liquid-liquid, fluid-solid, etc.) of pure systems and mixtures consisting of complex polyatomic molecules.  相似文献   

8.
基于密度泛函理论研究二元排斥Yukawa流体的表面结构性质   总被引:3,自引:0,他引:3  
杨振  徐志军  杨晓宁 《物理化学学报》2006,22(12):1460-1465
基于自由能密度泛函理论(DFT)考察了二元排斥Yukawa (HCRY)流体在不同外场下的密度分布. 基于微扰理论, 体系的Helmholtz自由能泛函采用硬球排斥部分和长程色散部分贡献之和, 其中Kierlik和Rosinberg的加权密度近似(WDA)被用来计算硬球排斥部分, 而色散部分采用平均场理论(MFT)进行描述. 为了验证DFT计算结果的合理性, 研究中采用巨正则Monte Carlo(GCMC)模拟计算了在不同主体相密度、硬核直径和位能参数比的条件下二元HCRY混合流体的密度分布. 结果表明, 该DFT计算结果与GCMC模拟值吻合良好.  相似文献   

9.
We present a methodology based on grand-canonical transition-matrix Monte Carlo and finite-size scaling analysis to calculate surface tensions in binary mixtures. In particular, mixture transition-matrix Monte Carlo is first used to calculate apparent, system-size-dependent free-energy barriers separating coexisting fluid phases. Finite-size scaling is then used to extrapolate these values to the infinitely large system limit to determine the true thermodynamic surface tension. A key distinction of the methodology is that it yields the entire isothermal surface-tension curve for a binary mixture in a relatively small number of simulations. We demonstrate the utility of the method by calculating surface-tension curves for three binary Lennard-Jones mixtures. While we have only examined the surface tension of simple fluids in this work, the method is general and can be extended to molecular fluids as well as to determine interfacial tensions of liquid-liquid interfaces.  相似文献   

10.
We assess the accuracy of the self-consistent Ornstein-Zernike approximation for a binary symmetric hard-core Yukawa mixture by comparison with Monte Carlo simulations of the phase diagrams obtained for different choices of the ratio alpha of the unlike-to-like interactions. In particular, from the results obtained at alpha=0.75 we find evidence for a critical endpoint in contrast to recent studies based on integral equation and hierarchical reference theories. The variation of the phase diagrams with range of the Yukawa potential is investigated.  相似文献   

11.
Monte Carlo simulations in the NVT ensemble of the reference hard-sphere fluid have been performed to obtain the “exact” first- and second-order terms in the inverse temperature expansion of the free energy of fluids with hard-core potentials. The results have been used to obtain parametrizations of the free energy of fluids with Sutherland potentials with variable range as well as for a fluid with a hard-core Lennard–Jones potential. The results for the excess energy and the equation of state are compared with simulation data available in the literature for these fluids.  相似文献   

12.
The thermodynamic properties of strong short-range attractive Yukawa fluids, κ = 10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement.  相似文献   

13.
We extend the geometric cluster algorithm [J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004)], a highly efficient, rejection-free Monte Carlo scheme for fluids and colloidal suspensions, to the case of anisotropic particles. This is made possible by adopting hyperspherical boundary conditions. A detailed derivation of the algorithm is presented, along with extensive implementation details as well as benchmark results. We describe how the quaternion notation is particularly suitable for the four-dimensional geometric operations employed in the algorithm. We present results for asymmetric Lennard-Jones dimers and for the Yukawa one-component plasma in hyperspherical geometry. The efficiency gain that can be achieved compared to conventional, Metropolis-type Monte Carlo simulations is investigated for rod-sphere mixtures as a function of rod aspect ratio, rod-sphere diameter ratio, and rod concentration. The effect of curved geometry on physical properties is addressed.  相似文献   

14.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

15.
A recently proposed third order + second order perturbation density functional theory (DFT) approach is tested for the validity and applicability to purely repulsive model fluids subjected to various external fields. Hard core repulsive Yukawa potential, point particle Yukawa potential, and inverse power potential are employed as sample models. Theoretical DFT results are compared with the corresponding simulation data obtained by grand canonical ensemble Monte Carlo simulation. This comparison indicates that the third order + second order perturbation DFT approach is suitable for these purely repulsive fluids only on condition of high accuracy of the imported bulk second order direct correlation function (DCF). However, in this case the origin of the successful performance somewhat differs from that observed for the mean field approximation applied to van der Waals fluids. In the present case it originates from the observation that the bulk second order DCF is strongly dependent on the density argument for the hard-core part, while for the distances exceeding the core dimension this dependence is considerably weaker.  相似文献   

16.
Colloid-colloid interactions in charge-stabilized dispersions can to some extent be represented by the hard-core Yukawa model. The crystallization process and polymorph selection of hard-core Yukawa model are studied by means of smart Monte Carlo simulations in the region of face-centered-cubic (fcc) phase. The contact value of hard-core Yukawa potential and the volume fraction of the colloids are fixed, while the Debye screening length can be varied. In the early stage of the crystallization, the precursors with relatively ordered liquid structure have been observed. Although the crystal structure of thermodynamically stable phase is fcc, the system crystallizes into a mixture of fcc and hexagonal close-packed (hcp) structures under small Debye screening length since the colloidal particles act as effective hard spheres. In the intermediate range of Debye screening length, the system crystallizes into a mixture of fcc, hcp, and body-centered-cubic (bcc). The existence of metastable hcp and bcc structures can be interpreted as a manifestation of the Ostwald’s step rule. Until the Debye screening length is large enough, the crystal structure obtained is almost a complete fcc suggesting the system eventually reaches to a thermodynamically stable state.  相似文献   

17.
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the chemical potentials and pressures from the simulations with analytical predictions from the optimized Baxter model. We show that the model is accurate to within 10% over a range of volume fractions from 0.1 to 0.4, interaction strengths up to three times the thermal energy, and interaction ranges from 6% to 20% of the particle diameter, and performs even better in most cases. We furthermore establish the consistency of the model by showing that the thermodynamic properties of the Yukawa fluid computed via simulations may be understood on the basis of one similarity variable, the stickiness parameter defined within the optimized Baxter model. Finally, we show that the optimized Baxter model works significantly better than an often used, naive method determining the stickiness parameter by equating the respective second virial coefficients based on the attractive Yukawa and Baxter potentials.  相似文献   

18.
The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented. We confirm Noro-Frenkel's extended law of scaling according to which the properties of a short-ranged fluid at a given temperature and density are independent of the detailed form of the interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that the critical temperature as a function of the effective range is independent of the interaction potential, i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for lysozyme proteins.  相似文献   

19.
We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigma相似文献   

20.
A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on Rosenfeld's perturbative method. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall. Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim and other density functional theories. The present theory is simple in form and computationally efficient. It predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号