首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several members of the new family A(1-x)M(4-x)Bi(11+x)Se21 (A = K, Rb, Cs; M = Sn, Pb) were prepared by direct combination of A2Se, Bi2Se3, Sn (or Pb), and Se at 800 degrees C. The single-crystal structures of K(0.54)Sn(3.54)Bi(11.46)Se21, K(1.46)Pb(3.08)Bi(11.46)Se21, Rb(0.69)Pb(3.69)Bi(11.31)Se21, and Cs(0.65)Pb(3.65)Bi(11.35)Se21 were determined. The compounds A(1-x)M(4-x)Bi(11+x) Se21 crystallize in a new structure type with the monoclinic space group C2/m, in which building units of the Bi2Te3 and NaCl structure type join to give rise to a novel kind of three-dimensional anionic framework with alkali-ion-filled tunnels. The building units are assembled from distorted, edge-sharing (Bi,Sn)Se6 octahedra. Bi and Sn/Pb atoms are disordered over the metal sites of the chalcogenide network, while the alkali site is not fully occupied. A grand homologous series Km(M6Se8)m(M(5+n)Se(9+n)) has been identified of which the compounds A(1-x)M(4-x)Bi(11+x)Se21 are members. We discuss here the crystal structure, charge-transport properties, and very low thermal conductivity of A(1-x)M(4-x)Bi(11+x)Se21.  相似文献   

2.
New oxyfluorides Li(2x)Ca(1.5-x) square (0.5-x)M2O6F (M = Nb, Ta), belonging to the cubic pyrochlore structural type (Z = 8, a approximately 10.5 angstroms), were synthesized by solid state reaction for 0 < or = x < or = 0.5. XRD data allowed us to determine their structures from single crystals for the two alpha and beta-Ca(1.5) square (0.5)Nb2O6F forms and from powder samples for the others. This characterisation was completed by TEM and solid state 19F NMR experiments. For the Ca(1.5) square (0.5)M2O6F (x = 0) pyrochlore phases, the presence of a double ordering phenomenon is demonstrated, involving on one hand the Ca(2+) ions and the vacancies and on the other hand the oxide and the fluoride anions which are strictly located in the 8b sites of the Fd3m aristotype space group. The Ca(2+) ions/vacancies ordering leads to a reversible phase transition, a (P4(3)32) <--> beta (Fd3m). The 19F NMR study strongly suggests that, in the beta-phases, the fluoride ions are only on average at the centre of the Ca3 square tetrahedron. It shows that slightly different Ca-F distances occuring in alpha-Ca(1.5) square (0.5)Nb2O6F may be related to a more difficult thermal ionic and vacancies diffusion process than in the tantalate compound. This may explain the hysteresis phenomenon presented by the phase transition. A solid solution Li(2x)Ca(1.5-x) square (0.5-x) Ta2O6F (0 < or = x < or = 0.5) was prepared and the order-disorder phase transition observed for Ca(1.5) square (0.5)M2MO6F compounds disappears for all the other compositions where less or no more vacancies exist in the 16d sites. In the LiCaM2O6F compounds, the 19F NMR study allows us to determine the Ca(2+) and Li+ ions distributions around the fluoride ions and shows that the [FLi2Ca2] environment is clearly favoured.  相似文献   

3.
Syntheses,StructuresandPropertiesofSome NewCompositionPerovskiteCompounds:Sr_(0.6)Bi_(0.4)FeO_(2.7),Sr_(1-x)Bi_xFeO_(3-y) and Ba...  相似文献   

4.
Several compositions of manganese-tin-bismuth selenide solid-solution series, Mn(1-x)Sn(x)Bi(2)Se(4) (x = 0, 0.3, 0.75), were synthesized by combining high purity elements in the desired ratio at moderate temperatures. X-ray single crystal studies of a Mn-rich composition (x = 0) and a Mn-poor phase (x = 0.75) at 100 and 300 K revealed that the compounds crystallize isostructurally in the monoclinic space group C2/m (no.12) and adopt the MnSb(2)Se(4) structure type. Direct current (DC) magnetic susceptibility measurements in the temperature range from 2 to 300 K indicated that the dominant magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solutions below 50 K switches from antiferromagnetic (AFM) for MnBi(2)Se(4) (x = 0), to ferromagnetic (FM) for Mn(0.7)Sn(0.3)Bi(2)Se(4) (x = 0.3), and finally to paramagnetic (PM) for Mn(0.25)Sn(0.75)Bi(2)Se(4) (x = 0.75). We show that this striking variation in the nature of magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solution series can be rationalized by taking into account: (1) changes in the distribution of magnetic centers within the structure arising from the Mn to Sn substitutions, (2) the contributions of spin-polarized free charge carriers resulting from the intermixing of Mn and Sn within the same crystallographic site, and (3) a possible long-range ordering of Mn and Sn atoms within individual {M}(n)Se(4n+2) single chain leading to quasi isolated {MnSe(6)} octahedra spaced by nonmagnetic {SnSe(6)} octahedra.  相似文献   

5.
Two new phosphates, Bi(4.25)(PO4)2O(3.375) and Bi(5)(PO(4))(2)O(4.5), have been analyzed by single-crystal X-ray diffraction in the series Bi(4+x)(PO4)2O(3+3x/2) (0.175 < or = x < or = 1). The syntheses of the compositions ranging from x = 0.175 to 0.475 were carried out by the ceramic route. The compositions from x = 0.175 to 0.475 form a solid solution with a structure similar to that of Bi(4.25)(PO4)2O(3.375), while Bi(5)(PO4)2O(4.5) was isolated from a mixture of two phases. Both of the phases form fluorite-related structures but, nevertheless, differ from each other with respect to the arrangement of the bismuth atoms. The uniqueness in the structures is the appearance of isolated PO(4) tetrahedra separated by interleaving [Bi2O2] units. ac impedance studies indicate conductivity on the order of 10(-5) S cm(-1) for Bi(4.25)(PO4)2O(3.375). Crystal data: Bi(4.25)(PO4)2O(3.375), triclinic, space group P (No. 1), with a = 7.047(1) A, b = 9.863(2) A, c = 15.365(4) A, alpha = 77.604(4) degrees, beta = 84.556(4) degrees, gamma = 70.152(4) degrees, V = 980.90(4) A3, and Z = 4; Bi(5)(PO4)2O(4.5), monoclinic, space group C2/c (No. 15), with a = 13.093(1) A, b = 5.707(1) A, c = 15.293(1) A, beta = 98.240(2) degrees, V = 1130.95(4) A(3), and Z = 8.  相似文献   

6.
Crystals of the composition Sr(2-x)Ba(x)Bi(3) (0 < or = x < or = 1.3) have been synthesized from the elements and were characterized by single-crystal and powder X-ray diffraction methods. The compounds crystallize for x = 0, 0.45, 0.86, 1.08, 1.28 in the structure type of the parent compound Sr 2Bi 3 with space group Pnna (No. 52) and Z = 4. Substitution of Sr by Ba leads to a site preference for Ba. The anionic Bi substructures in the pseudoternary system simultaneously distort under remarkable elongation of one distinct Bi-Bi contact. Magnetic measurements for samples with x = 0, 0.45 and 1.08 reveal superconducting transitions at low temperatures. Linear muffin-tin orbital band structure calculations of Sr(2)Bi(3) show strong cation-anion interactions that greatly stabilize the structure. Besides showing characteristics of a typical metal, the band structure plot unveils the co-instantaneous occurrence of flat and steep bands around the Fermi level indicative for superconductivity.  相似文献   

7.
The compounds Pb(2)La(x)Bi(8-x)S(14) (I), Sr(2)La(x)Bi(8-x)S(14) (II), and Cs(2)La(x)Bi(10-x)S(16) (III) were synthesized from the corresponding elements or binary sulfides at temperatures above 850 degrees C. Compounds I and II are isostructural, forming a new structure type, while the structure of III is related to the structure of the mineral kobellite. All compounds crystallize in the orthorhombic space group Pnma (No. 62) with a = 21.2592(4) A, b = 4.0418(1) A, c = 28.1718(3) A, Z = 4 for I, a = 21.190(1) A, b = 4.0417(2) A, c = 28.285(2) A, Z = 4 for II and a = 34.893(4) A, b = 4.0697(4) A, c = 21.508(2) A, Z = 4 for III. All compounds exhibit mixed site occupancy between Bi and La. Furthermore, I and II exhibit disorder between the divalent atom (Sr or Pb) and/or La and/or Bi. The structures of I and II consist of thin walls made of two metal-atom-thick NaCl-type blocks running in two opposite directions in the ac plane, forming rhombus-shaped tunnels. These tunnels are filled with Bi(2)Te(3)-type fragments. In the points where the walls intersect they form Gd(2)S(3)-type fragments. The structure of III consists of a complex three-dimensional framework with Cs-filled tunnels. All compounds are semiconductors with band gaps around 1.0 eV, and they melt around 740-860 degrees C.  相似文献   

8.
9.
In the present paper, the ion dynamics and relaxation of fluoride ions in Pb(1-x)Sn(x)F(2) (with x=0.2-0.6) solid solutions, prepared by mechanochemical milling, are studied in the conductivity formalism over wide ranges of frequencies and temperatures. The conductivity spectra of the investigated materials are analyzed by the Almond-West (AW) power-law model. The estimated values of the hopping rates and the dc conductivity of different compositions are thermally activated with almost the same activation energy. The calculated values of the concentration of mobile ions, n(c), are almost independent of temperature and composition for x=0.2-0.4. The maximum value of n(c) is obtained for the x=0.6 sample, although it does not show the maximum conductivity. Therefore, the composition dependence of the ionic conductivity of these solid solutions could be explained based on the extracted parameters. The results presented in the current work indicate that the AW model represents a reasonable approximation of the overall frequency-dependent conductivity behavior of the investigated materials. The conductivity spectra at different temperatures for each composition are successfully scaled to a single master curve, indicating a temperature-independent relaxation mechanism. For different compositions, however, the conductivity spectra cannot be scaled properly, indicating composition-dependent relaxation dynamics.  相似文献   

10.
Fang Y  Ritter C  White T 《Inorganic chemistry》2011,50(24):12641-12650
Fluor-chlorellestadite solid solutions Ca(10)(SiO(4))(3)(SO(4))(3)Cl(2-x)F(x), serving as prototype crystalline matrices for the fixation of hazardous fly ash, were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The lattice parameters of the ellestadites vary linearly with composition and show the expected shrinkage of unit cell volume as fluorine (IR = 1.33 ?) displaces chlorine (IR = 1.81 ?). FTIR spectra indicate little or no OH(-) in the solid solutions. All compositions conform to P6(3)/m symmetry where F(-) is located at the 2a (0, 0, (1)/(4)) position, while Cl(-) is displaced out of the 6h Ca(2) triangle plane and occupies 4e (0, 0, z) split positions with z ranging from 0.336(3) to 0.4315(3). Si/S randomly occupy the 6h tetrahedral site. Ellestadites rich in Cl (x ≤ 1.2) show an overall deficiency in halogens (<2 atom per formula unit), particularly Cl as a result of CaCl(2) volatilization, with charge balance achieved by the creation of Ca vacancies (Ca(2+) + 2Cl(-) →□(Ca) + 2□(Cl)) leading to the formula Ca(10-y)(SiO(4))(3)(SO(4))(3)Cl(2-x-2y)F(x). For F-rich compositions the vacancies are found at Ca(2), while for Cl-rich ellestadites, vacancies are at Ca(1). It is likely the loss of CaCl(2) which leads tunnel anion vacancies promotes intertunnel positional disorder, preventing the formation of a P2(1)/b monoclinic dimorph, analogous to that reported for Ca(10)(PO(4))(6)Cl(2). Trends in structure with composition were analyzed using crystal-chemical parameters, whose systematic variations served to validate the quality of the Rietveld refinements.  相似文献   

11.
Single crystals of three new noncentrosymmetric (NCS) phosphates, α (1) and β (2) forms of Cs(3)KBi(2)Mn(4)(PO(4))(6)Cl and α-Cs(3)KBi(2)Fe(4)(PO(4))(6)Cl (3), were grown in a reactive CsCl/KCl molten-salt media. Their structures were determined by single-crystal X-ray diffraction methods showing that the α form crystallizes in the space group Cc (No. 9), which is in one of the 10 NCS polar crystal classes, m (2/m) while the β form crystallizes in P4(3) (No. 78) of another polar class, 4 (4/m). The unit cell parameters of the α form can be approximately correlated with that of the β form via the 3 × 3 orientation matrix [0.5, 0.5, 0; -0.5, 0.5, 0; 0, 0, 2 sin β]. The structures of these otherwise complicated phosphates exhibit two types of channels with circular and elliptical windows where the Cl-centered Cl(Bi(2)Cs) acentric unit is located. The neighboring acentric units are arranged in a parallel fashion in the α form, resulting in the monoclinic (Cc) lattice, but "antiparallel" in the β form, thus giving the tetragonal (P4(3)) unit cell. 1-3 feature the compatible M-O-P unit that contains four crystallographically independent MO(x) (x = 4, 5) polyhedra, which are connected to the Cl(Bi(2)Cs) acentric unit through one short and one long M(II)···Cl bond. The compositions of 1 and 2 consist of three Mn(2+) (d(5)) and one Mn(3+) (d(4)) per formula unit and that of 3 has three Fe(2+) (d(6)) and one Fe(3+) (d(5)). Bond valence sums reveal that, in the α phase, the trivalent site adopts distorted tetrahedral M(1)(3+)O(4) coordination and, in the β phase, distorted trigonal-bipyramidal M(4)(3+)O(5). Thus far, the iron phase has only been isolated in the α form presumably because of little extra stabilization energy gain if the Fe(2+) d(6) ion were to occupy the M(1)O(4) site. The possible origins pertaining to the structural differences in the α and β forms are discussed.  相似文献   

12.
The study of the pseudobinary system Cu(2)SnS(3-)Cu(2)SiS(3) shows that a solid solution (Cu(2)Si(x)Sn(1-x)S(3)) exists in the range 0.4 < or = Si/(Sn+Si) < or = 0.6. Based on diffuse reflectance and photoelectrochemical measurements these compounds show potential as absorber materials for photovoltaic devices. The compounds were prepared at 850 degrees C from copper sulfide, silicon, tin, and sulfur and were analyzed with single-crystal (for x approximately 0.40) and powder diffraction techniques. Optical band gaps of 1.25, 1.35, and 1.45 eV were observed for the three compositions x = 0.39, 0.48, and 0.61; cathodic photocurrent occurring is significant.  相似文献   

13.
Crystal Growth and Structure Determination of BaPb(1–x)BixO3 (x = 0.15) Single crystals (0.15X0.20X0.20 mm) of BaPb(1–x)BixO3 (x = 0.15) have been grown from a lead (II)-oxide melt. The refinement of the crystal structure (I4/mcm; a = 6.047(5), c = 8.603(8) Å; Z = 4; 281 diffractometer data, R = 0.03) resulted in Pb(Bi)? O? Pb(Bi) bonding angles of 180° (2X), and 165° (4X) within the a/b plane. The identity of single crystals and powder material was ensured by an Rietveld profile fit of the X-ray powder diagram. The compositions of the single crystals have been determined applying electron microprobe techniques. Tc of the single crystals was found to be 13.2 K (onset, S QUID-magnetometer).  相似文献   

14.
We demonstrate the synthesis of semiconductor Pb(2-x)Sn(x)S(2) nanocrystals with a cubic rock salt crystal structure in a composition range where this structure is unstable in the bulk. The cubic Pb(2-x)Sn(x)S(2) nanocrystals were prepared using a modified hot injection colloidal synthetic route. The x value is in the range 0.40 < x < 1. Even though these compositions lie in a region of the PbS-SnS phase diagram where no single phase exists, and despite the fact that PbSnS(2) is a distorted orthorhombic phase, the Pb(2-x)Sn(x)S(2) nanocrystals are single phase solid solutions with cubic NaCl-type structure. Experimental evidence for this derives from powder X-ray diffraction (PXRD), electron diffraction, and pair distribution function (PDF) analysis. Elemental compositions determined using scanning transmission electron microscopy/energy dispersive spectroscopy (STEM/EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and electron energy loss spectroscopy (EELS) reveal a composition close to the nominal ones. The band gaps of the Pb(2-x)Sn(x)S(2) nanocrystals (0.52-0.57 eV) are blue-shifted by quantum confinement relative to that of the hypothetical cubic PbSnS(2) phase which density functional theory (DFT) calculations show to be much narrower (0.2 eV) than in the case of orthorhombic PbSnS(2) (1.1 eV). The Pb(2-x)Sn(x)S(2) nanocrystals exhibit a well-defined band gap in the near-IR region and are stable up to ~300 °C above which they phase separate into cubic PbS and orthorhombic α-SnS.  相似文献   

15.
The structure, hydrogen-storage property and electrochemical characteristics of La(0.7)Mg(0.3)Ni(5.0-x)(Al(0.5)Mo(0.5))x (x = 0-0.8) hydrogen-storage alloys have been studied systematically. X-ray diffraction Rietveld analysis shows that all the alloys consist of an La (La,Mg)2Ni9 phase and an LaNi5 phase. The pressure-composition isotherms indicate that the hydrogen-storage capacity first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. Electrochemical measurements show that the maximum discharge capacity and the exchange-current density of the alloy electrodes increase as x increases from 0 to 0.6 and then decrease when x increases further from 0.6 to 0.8. Moreover, the low-temperature dischargeability of the alloy electrodes increases monotonically with increasing x in the alloys.  相似文献   

16.
Raman scattering and x-ray diffration were used to characterize the structural and vibrational properties of the Cs2NaGaxSc(1-x)F6 solid solutions, for x ranging from 0.0 to 1.0. The Raman spectra, taken at room and low temperature, allow us to follow the phase evolution in detail and indicate the breaking of the local symmetry since low Ga concentration levels. Five compositions were studied by x-ray diffraction: x = 0.0, 0.2, 0.5, 0.8, and 1.0. A cubic space group, Fm3m, was found to x = 0.0 and x = 0.2 and a trigonal one was found to x = 0.5, 0.8, and 1.0. Details of both phases are presented and the correlation between x-ray diffraction and Raman scattering is discussed.  相似文献   

17.
Nanostructured Bi(2-x)Cu(x)S(3) (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) thermoelectric polycrystals were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS) methods. The effect of Cu content on the microstructure and thermoelectric property of Bi(2-x)Cu(x)S(3) bulk samples was investigated. It was found that the subtle tailoring of Cu content could reduce both the electrical resistivity and the thermal conductivity at the same time, and consequently enhancing the thermoelectric property. A low electrical resistivity of 1.34 × 10(-4)Ω m(-1) and a low thermal conductivity of 0.52 W m(-1) K(-1) were obtained for the Bi(1.995)Cu(0.005)S(3) sample at 573 K. The low thermal conductivity is supposed to be due to the nanoscopic Cu-rich regions embedded in the host matrix. A peak ZT value of 0.34 at 573 K was achieved for the Bi(1.995)Cu(0.005)S(3) composition, which is the highest value in the Bi(2)S(3) system reported so far.  相似文献   

18.
We prepared BiOCl(1-x)Br(x) (x=0-1) solid solutions and characterized their structures, morphologies, and photocatalytic properties by X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, Raman spectroscopy, photocurrent and photocatalytic activity measurements and also by density functional theory calculations for BiOCl, BiOBr, BiOCl(0.5)Br(0.5). Under visible-light irradiation BiOCl(1-x)Br(x) exhibits a stronger photocatalytic activity than do BiOCl and BiOBr, with the activity reaching the maximum at x=0.5 and decreasing gradually as x is increased toward 1 or decreased toward 0. This trend is closely mimicked by the photogenerated current of BiOCl(1-x)Br(x) , indicating that the enhanced photocatalytic activity of BiOCl(1-x)Br(x) with respect to those of BiOCl and BiOBr originates from the trapping of photogenerated carriers. Our electronic structure calculations for BiOCl(0.5)Br(0.5) with the anion (O(2-), Cl(-), Br(-)) and cation (Bi(3+)) vacancies suggest that the trapping of photogenerated carriers is caused most likely by Bi(3+) cation vacancies, which generate hole states above the conduction band maximum.  相似文献   

19.
20.
A new phase [PtIn6](GeO4)2O, a filled variant of [PtIn6](GaO4)2, and the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) were prepared and characterized. Single-crystal structure refinements show that [PtIn6](GeO4)2O is isotypic with the mineral, sulfohalite Na6FCl(SO4)2, and crystallizes in the space group Fmm (Z = 4) with a = 1006.0(1) pm. The building units of [PtIn6](GeO4)2O are isolated [PtIn6]10+ octahedra and (GeO4)4- tetrahedra, and the isolated O2- ions occupy the centers of the In6 octahedra made up of six adjacent PtIn6 octahedra. The lattice parameter of the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) varies gradually from a = 1001.3(1) pm at x = 0 to a = 1006.0(1) pm at x = 2, and the color of the solid solution changes gradually from black (x = 0) to red (x = 1) to yellow (x = 2). The cause for the gradual color change was examined by performing density functional theory electronic structure calculations for the end members [PtIn6](GaO4)2 and [PtIn6](GeO4)2O. Our analysis indicates that an oxygen atom at the center of a In6 octahedron cuts the In 5p/In 5p bonding interactions between adjacent [PtIn6]10+ octahedra thereby raising the bottom of the conduction bands, and the resulting quantum dot effect is responsible for the color change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号