首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A preparative separation of total ceramide fraction from the crude extract of the erythrocytary lipids was done by means of normal-phase column chromatography. This was followed by comprehensive profiling of the molecular species in the obtained ceramide by means of HPLC/MS and HPLC/MS/MS. The MS/MS analysis displayed that human erythrocytes contain 19 molecular species of the ceramide of which 12 can be unambiguously identified; erythrocytary ceramides may contain not only sphingosine but also sphinganine as their building blocks; one of the species (namely Cer 24:2/S18) previously has managed to escape identification. We also obtained a quantitative profile of major ceramide species showing the prevalence of Cer 22:0/S18, 24:0/S18 and 24:1/S18.  相似文献   

2.
The ceramides of the stratum corneum are critical to maintaining the epidermal barrier function of the skin. A number of skin diseases and disorders are known to be related to impairments of the ceramide pattern. Therefore, obtaining mass spectrometric profiles of the nine ceramide classes known to exist aids our understanding of the underlying molecular mechanisms, which should eventually lead to new diagnostic opportunities: for example, the mass spectrometric profiles of patients suffering from serious skin diseases such as atopic dermatitis and psoriasis can be compared to those of healthy controls. Previous work on mass spectrometric analysis of ceramides relied mostly on GC/MS after hydrolysis and derivatization. The introduction of ESI–MS and LC/ESI–MS has provided new options for directly analyzing intact ceramides. However, some of the ceramide classes are not accessible to ESI–MS. However, as shown in this work, these limitations of GC/MS and ESI-MS can be overcome using a new approach based on normal phase LC interfaced with APCI–MS. Separation and online detection of the stratum corneum ceramide classes became possible in one run. Ceramide species with C26 and/or C28 fatty acid chains were the most abundant ones in Cer [NP], Cer [NH], Cer [AP], and Cer [AH]. The main component of Cer [AS] was C16. The ω-esterified ceramide classes Cer [EOS], Cer [EOP] and Cer [EOH] contained mostly species with fatty acids >C30. This was also the case for Cer [NS], suggesting an analogy to the ω-esterified ceramides. In addition, evidence for a new ceramide class Cer [NdS] was found. This paper was presented at the 38th Annual Meeting of the German Society for Maa Spectrometry (DGMS) held in March 2005 in Rostock, Germany.  相似文献   

3.
Ceramide is a key metabolite in both anabolic and catabolic pathways of sphingolipids. The very long fatty acyl chain ceramides N-(docosanoyl)-sphing-4-enine (Cer(22:0)) and N-(tetracosanoyl)-sphing-4-enine (Cer(24:0)) are associated with multiple biological functions. Elevated levels of these sphingolipids in tissues and in the circulation have been associated with insulin resistance and diabetes. To facilitate quantification of these very long chain ceramides in clinical samples from human subjects, we have developed a sensitive, accurate, and high-throughput assay for determination of Cer(22:0) and Cer(24:0) in human plasma. Cer(22:0) and Cer(24:0) and their deuterated internal standards were extracted by protein precipitation and chromatographically separated by HPLC. The analytes and their internal standards were ionized using positive-ion electrospray mass spectrometry, then detected by multiple-reaction monitoring with a tandem mass spectrometer. Total liquid chromatography–tandem mass spectrometry (LC-MS/MS) runtime was 5 min. The assay exhibited a linear dynamic range of 0.02–4 and 0.08–16 μg/ml for Cer(22:0) and Cer(24:0), respectively, in human plasma with corresponding absolute recoveries from plasma at 109 and 114 %, respectively. The lower limit of quantifications were 0.02 and 0.08 μg/ml for Cer(22:0) and Cer(24:0), respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. With the semi-automated format and short LC runtime for the assay, a throughput of ~200 samples/day can easily be achieved.
Figure
LC-MS/MS chromatograms for Cer(22:0) and Cer(24:0) in LLOQ, in which the analyte and internal standard are shown in blue and red, respectively  相似文献   

4.
Ceramides are known to be involved in various biological processes with their physiological levels elevated in various disease conditions such as diabetes, Alzheimer's, atherosclerosis. To facilitate the rapid screening of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 inhibition in HepG2 cells, a RapidFire coupled to tandem mass spectrometry (RF–MS/MS) method has been developed. The RF platform provides an automated solid-phase extraction system that gave a throughput of 12.6 s per sample to an MS/MS system using electrospray ionization under the positive ion mode. Chromatographic separation of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 was achieved using a ternary gradient on C8 type E cartridge. The MS/MS ion transitions monitored were 538.2 → 264.2, 650.7 → 264.2, 648.6 → 264.2, 566.4 → 264.2, 510.4 → 264.2, 594.4 → 264.2, 622.5 → 264.2, and 552.3 → 250.2 for Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, d18:1/22:0, and the internal standard (Cer d17:1/18:0), respectively. The RF–MS/MS methodology showed an excellent performance with an average Z′ value of 0.5–0.7. This is the first report of an RF–MS/MS assay for screening of ceramides which is amenable for high-throughput screening.  相似文献   

5.
The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well‐known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in‐source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0‐, C24:0‐ and C24:1‐ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0‐, C24:0‐ and C24:1‐ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Ceramides mediate antiproliferative responses, and it has been proposed that increasing the level of ceramides in cancer cells may have a therapeutic antitumor effect. However, ceramides, because of their high "packing parameter" (PP), do not form lipid assemblies that can be dispersed in a form suitable for intravenous administration. We found that nanoliposomes containing short- or medium-chain ceramides are unstable because of their very high (>1.3) PP. To overcome this major obstacle, we included the lipopolymer 2kPEG-DSPE, which reduces the additive PP. The presence of PEG-DSPE allows the formation of highly stable (>1 year) ceramide (Cer)-containing nanoliposomes suitable for systemic administration. Using tumor cell lines, we found that the ceramide cytotoxicity was not impaired by their inclusion in nanoliposomes. The use of 14C-labeled ceramides shows that the C6Cer, but not C16Cer, was transferred from the nanoliposomes to the cells and metabolized efficiently. The difference between the two ceramides is related to the large difference between their critical aggregation concentration and was correlated with the much higher cytotoxity of liposomal C6Cer. The activity of 2kPEG-DSPE as a steric stabilizer (as previously shown for Doxil) was also confirmed for C6Cer-containing nanoliposomes. The 2kPEG-DSPE lipopolymer significantly reduced the desorption rate of the ceramide from the liposome bilayer, thereby allowing liposomes containing C6Cer to reach the tumor site and to demonstrate therapeutic efficacy.  相似文献   

7.
The potential for using testosterone and nandrolone esters in racehorses to boost the biological concentrations of these steroids and enhance athletic performance is very compelling and should be seriously considered in formulating regulatory policies for doping control. In order to regulate the use of these esters in racehorses, a sensitive and validated method is needed. In this paper, we report such a method for simultaneous separation, screening, quantification and confirmation of 16 testosterone and nandrolone esters in equine plasma by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Analytes were extracted from equine plasma by liquid-liquid extraction using a mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v) and separated on a sub-2 micron C(18) column. Detection of analytes was achieved on a triple-quadrupole mass spectrometer by positive electrospray ionization mode with selected reaction monitoring (SRM). Mobile phase comprised 2 mM ammonium formate and methanol. Deuterium-labeled testosterone enanthate and testosterone undecanoate were used as dual-internal standards for quantification. Limits of detection (LOD) and quantification (LOQ) were 25-100 pg/mL and 100-200 pg/mL, respectively. The linear dynamic range of quantification was 100-10,000 pg/mL. For confirmation of the presence of these analytes in equine plasma, matching of the retention time with mass spectrometric ion ratios from MS/MS product ions was used. The limit of confirmation (LOC) was 100-500 pg/mL. The method is sensitive, robust, selective and reliably reproducible.  相似文献   

8.
To study an expected transition of misoprostol from human blood into breast milk, a novel method for the determination of its active metabolite misoprostol acid (MPA) was developed. MPA was determined in serum and breast milk samples by an isotope dilution assay using gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS). After addition of (15S)-15-methylprostaglandin E(2) (15-methyl-PGE(2)) as an internal standard, MPA was extracted from both matrices using a reversed-phase cartridge. The prostanoids were derivatized with O-2,3,4,5,6-pentafluorobenzylhydroxylamine hydrochloride (PFBHA) and 2,3,4,5,6-pentafluorobenzyl bromide (PFBB) to the pentafluorobenzyl oxime (PFBO)-pentafluorobenzyl ester (PFB) derivatives. The sample was subjected to thin-layer chromatography with ethyl acetate-hexane (1 : 1 (v/v)) as the developing solvent. The corresponding zone was extracted. After derivatization to the trimethylsilyl ether, MPA was determined by GC/NICI-MS/MS using the [molecule (M) - pentafluorobenzyl (PFB)](-) ([P](-)) ions as precursor in the negative ion chemical ionization mode. The product ions used for quantification were [P - 2TMSOH - C(6)F(5)CH(2)OH](-) (MPA) and [P - 2TMSOH - C(6)F(5)CH(2)OH - CO(2)](-)(15-methyl-PGE(2)), respectively. The limit of quantification for MPA was approximately 1 pg ml(-1) in breast milk and serum samples. The correlation coefficients of the calibration curves for MPA were r > 0.997 in the 0.5-2000 pg ml(-1) range for both tested matrices.  相似文献   

9.
Zhao H  Wang L  Qiu Y  Zhou Z  Zhong W  Li X 《Analytica chimica acta》2007,586(1-2):399-406
A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH3I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 microg kg(-1). Limit of detection (LOD) of barbital was 0.2 microg kg(-1) and that of amobarbital and phenobarbital were both 0.1 microg kg(-1) (S/N > or = 3). Limit of quantification (LOQ) was 0.5 microg kg(-1) for three barbiturates (S/N > or = 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.  相似文献   

10.
Shiga toxin 1 (Stx1) represents an AB5 toxin produced by enterohemorrhagic Escherichia coli, which cause gastrointestinal diseases in humans that are often followed by potentially fatal systemic complications, such as acute encephalopathy and hemolytic uremic syndrome. The expression of the preferential Stx1 receptor, Gb3Cer/CD77 (Gal alpha1-4Gal beta1-4Glc beta1-1Cer), is one of the primary determinants of susceptibility to tissue injury. Due to the clinical importance of this life-threatening toxin, a combined strategy of preparative high-performance thin-layer chromatography (HPTLC) overlay assay and mass spectrometry was developed for the detection and structural characterization of Stx1-binding glycosphingolipids (GSLs). A preparation of neutral GSLs from human erythrocytes, comprising 21.4% and 59.1% of the high- and low-affinity Stx1-binding ligands Gb3Cer/CD77 and Gb4Cer, respectively, was separated on silica gel precoated HPTLC plates and probed for the presence of Stx1 receptors. Stx1 positive on the one hand and anti-Gb3Cer/CD77 and anti-Gb4Cer antibody positive bands from parallel reference runs on the other hand were extracted with chloroform/methanol/water (30/60/8, v/v/v). These crude extracts were used without any further purification for a detailed structural analysis by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) in the negative ion mode. In all extracts investigated, neutral GSLs were detected as singly charged deprotonated molecular ions, [M-H]-, and neither buffer-derived salt adducts nor coextracted contaminants from the overlay assay procedure or the silica gel layer were observed. For the structural characterization of Stx1- and antibody-binding GSLs low-energy collision-induced dissociation (CID) was applied to high and low abundant receptor species of the crude extracts. All MS/MS spectra obtained contained full series of Y-type ions, B-type ions and additional ions generated by ring cleavages of the sugar moiety. Only analytical quantities in the microgram scale of a single GSL species within the complex GSL mixture were required for the structural MS characterization of Stx1 ligands as Gb3Cer/CD77 and Gb4Cer. This effective combined HPTLC/MS procedure offers a broad range of applications, not only for toxins of bacterial origin, but also for any GSL-binding agents such as plant-derived lectins or human proteins with yet unknown binding specificities.  相似文献   

11.
Sphingolipids have hydrophilic and hydrophobic properties, different saturation and combination of the oligosaccharide chains and mass homology of species located in a narrow m/z region hampering their recognition. To target sphingolipids for diagnostic purposes, standardized methods for lipid extraction, quali‐ and quantitative assessments are required. In this study, HPTLC‐MALDI MS was adopted to establish sphingolipid and glycosphingolipid profiles in muscle, brain and serum to create a database of molecules to be searched in the preclinical and clinical investigations. Specific protocols for lipid extraction were set up based on the characteristics of the tissue or/and fluids; this approach maximizes the HPTLC‐MALDI MS analytical throughput both for lipids extracted in organic and aqueous phase. This study indicates that alkaline hydrolysis is necessary for the detection of low abundant species such as Gb3Cer and ceramides in serum and Gb4Cer, CerP and HexCer in muscle tissue. The high hydrophobicity of ceramides has been overcome by the development of HPTLC plate in chloroform:methanol/50:3.5, which increases the number and the intensity of low abundant Cer species. MS/MS analysis has been conducted directly on HPTLC plate allowing the molecular recognition; furthermore a dataset of spectra was acquired to create a database for future profiling of these molecules.  相似文献   

12.
An analytical method for highly sensitive determination of four N-acyl dihydrosphingosines (NDSs) of all ceramides (CERs) in human hair, such as N-palmitoyl dihydrosphingosine (N16DS18), N-stearoyl dihydrosphingosine (N18DS18), N-lignocerol dihydrosphingosine (N24DS18) and N-nervonoyl dihydrosphingosine (N24:1DS18), has been developed using electrospray ionization (ESI) MS connected to reversed-phase LC with selected ion monitoring (SIM). The selection of negative ESI under optimal conditions of in-source collision-induced dissociation was determined based on the simplicity of molecular-related ions and their intensities. Of all ESI-MS parameters tested, the flow of dry nitrogen gas strongly affected the sensitivity of molecular-related ions, particularly in N24DS18 and N24:1DS18, while the capillary voltage elicited significantly different effects on the signal-to-noise ratio between N16DS18/N18DS18 and N24DS18/N24:1DS18. This newly developed method to determine the NDSs is the most sensitive of all existing methods, as shown in the limits of detection and quantification being in the range of 0.06-0.29 and 0.18-0.98fmol, respectively. The linearity, precision and accuracy were all sufficient to determine the NDSs in ca. 0.1mg of a hair fiber ( approximately 1cm in length). This method has been used to characterize levels of the NDSs from the proximal root end to the distal tip of each of six hair fibers obtained from two different females. Characteristic changes were observed between both females as well as among fibers derived from each female. This method will be useful not only for clarifying the roles of the CERs in human hair but also for investigating the physiology of CERs relevant to signal transduction and cell regulation in human cells/tissues.  相似文献   

13.
The stratum corneum (SC) is the outermost layer of skin that functions as a barrier and protects against environmental influences and transepidermal water loss. Its unique morphology consists of keratin-enriched corneocytes embedded in a distinctive mixture of lipids containing mainly ceramides, free fatty acids, and cholesterol. Ceramides are sphingolipids consisting of sphingoid bases, which are linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine (dS), sphingosine (S), phytosphingosine (P), and 6-hydroxysphingosine (H), and the fatty acid acyl chains are composed of non-hydroxy fatty acid (N), α-hydroxy fatty acid (A), ω-hydroxy fatty acid (O), and esterified ω-hydroxy fatty acid (E). The 16 ceramide classes include several combinations of sphingoid bases and fatty acid acyl chains. Among them, N-type ceramides are the most abundant in the SC. Mass spectrometry (MS)/MS analysis of N-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, which could be applied to structural identification of ceramides. Based on the MS/MS fragmentation patterns of N-type ceramides, comprehensive fragmentation schemes were proposed. In addition, mass fragmentation patterns, which are specific to the sphingoid backbone of N-type ceramides, were found in higher m/z regions of tandem mass spectra. These characteristic and general fragmentation patterns were used to identify N-type ceramides in human SC. Based on established MS/MS fragmentation patterns of N-type ceramides, 52 ceramides (including different classes of NS, NdS, NP, and NH) were identified in human SC. The MS/MS fragmentation patterns of N-type ceramides were characterized by interpreting their product ion scan mass spectra. This information may be used to identify N-type ceramides in the SC of human, rat, and mouse skin.  相似文献   

14.
A strategy combining high-performance thin layer chromatography (HPTLC), laser densitometry, and fully automated chip-based nanoelectrospray (nanoESIchip) performed on a NanoMate robot coupled to QTOF-MS was developed, optimized, and for the first time applied for mapping and structural identification of gangliosides (GGs) extracted and purified from a human angioblastic meningioma specimen. While HPTLC pattern indicated only seven fractions migrating as GM3, GM2, GM1, GD3, GD1a (nLD1, LD1), GD1b, GT1b, and possibly GD2, due to the high sensitivity, mass accuracy, and ability to ionize minor species in complex mixtures, nanoESIchip-QTOF MS was able to discover significantly more GG species than ever reported in meningioma. Thirty-four distinct glycosphingolipid components of which five asialo, one GM4, nine GM3, two GM2, two GD3, nine GM1, and six GD1 differing in their ceramide compositions were identified. All structures presented long-chain bases with 18 carbon atoms, while the length of the fatty acid was found to vary from C11 to C25. MS screening results indicated also that the diversity of the expressed GM1 structures is higher than expected in view of the low proportions evidenced by densitometric quantification. Simultaneous fragmentation of meningioma-associated GM1 (d18:1/24:1) and GM1 (d18:1/24:0) by MS/MS using CID confirmed the postulated structures of the ceramide moieties and provided data on the glycan core, which document that for each of the GM1 (d18:1/24:1) and GM1 (d18:1/24:0) forms both GM1a and GM1b isomers are expressed in the investigated meningioma tissue.  相似文献   

15.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

16.
Trace amounts of explosives on solid surfaces were detected by mass spectrometry at ambient conditions with a new technique termed dielectric barrier discharge ionization (DBDI). By the needle-plate discharge mode, a plasma discharge with energetic electrons was generated, which could launch the desorption and ionization of the explosives from solid surfaces. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN) were desorbed directly from the explosives-contaminated surface by DBDI, forming the typical anions of [TNT](-), [TNT - H](-), [RDX + NO(2)](-), [PETN + ONO(2)](-), and [RDX + ONO(2)](-). The ions were transferred into the MS instrument for analysis in the negative ion mode. The detection limit of present method was 10 pg for TNT (m/z 197, S/N 8 : 1), 0.1 ng for RDX (m/z 284, S/N 10 : 1), and 1 ng for PETN (m/z 260, S/N 12 : 1). The present method allowed the detection of trace explosives on various matrices, including paper, cloth, chemical fiber, glass, paints, and soil. A relative standard deviation of 5.57% was achieved by depositing 100 pg of TNT on these matrices. The analysis of A-5, a mixture of RDX and additives, has been carried out and the results were consistent with the reference values. The DBDI-MS method represents a simple and rapid way for the detection of explosives with high sensitivity and specificity, which is especially useful when they are present in trace amounts on ordinary environmental surfaces.  相似文献   

17.
Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon–carbon and acyl chain carbon–carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N–C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.
Graphical Abstract ?
  相似文献   

18.
A simple and robust method for quantification of zolpidem in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS). Es-citalopram was used as an internal standard. Zolpidem and internal standard in plasma sample were extracted using solid-phase extraction cartridges (Oasis HLB, 1 cm3/30 mg). The samples were injected into a C8 reversed-phase column and the mobile phase used was acetonitrile-ammonium acetate (pH 4.6; 10 mm) (80:20, v/v) at a flow rate of 0.7 mL/min. Using MS/MS in the selected reaction-monitoring (SRM) mode, zolpidem and Es-citalopram were detected without any interference from human plasma matrix. Zolpidem produced a protonated precursor ion ([M+H]+) at m/z 308.1 and a corresponding product ion at m/z 235.1. The internal standard produced a protonated precursor ion ([M+H]+) at m/z 325.1 and a corresponding product ion at m/z 262.1. Detection of zolpidem in human plasma by the LC-ESI MS/MS method was accurate and precise with a quantification limit of 2.5 ng/mL. The proposed method was validated in the linear range 2.5-300 ng/mL. Reproducibility, recovery and stability of the method were evaluated. The method has been successfully applied to bioequivalence studies of zolpidem.  相似文献   

19.
皱瘤海鞘的化学成分研究   总被引:7,自引:0,他引:7  
王超杰  苏镜娱  曾陇梅 《分析化学》2001,29(11):1311-1314
从中国广东惠州大亚湾海域采集的皱瘤海鞘的甲醇-氯仿提取物中分离出混合甾醇和神经酰胺两类化合物,混合甾醇经波谱分析和GC/MS联机分析,发现基主要由9种甾醇组成,含量约为甲醇-氯仿提取物的20%。通过波谱分析(如IR,^1HNMR,^13CNMR(DEPT)、^1H-^1H COSY、RCT、FABMS)和GC/MS分析证明神经酰胺结构是由4个同系物组成,含量为提取物的0.1%。同时也初步探讨了共生的皱瘤海鞘与冠瘤海鞘化学成分差异的原因。  相似文献   

20.
Ceramides are important intracellular second messengers that play a role in the regulation of cell growth, differentiation and programmed cell death. Analysis of these second messengers requires sensitive and specific analytical method to detect individual ceramide species and to differentiate between them. Eight molecular species of ceramide were identified from the marine sponge Haliclona cribricutis using electrospray ionization tandem mass spectrometry (ESI-MS/MS). From this marine sponge N-hencicosanoyl (N21:0) to N-hexasanoyl (N26:0) Octadecasphing-4 (E)-enine have been reported for the first time. The ESI-MS spectra gave several strong protonated molecular ion [M+H](+) with the corresponding bis (2-ethyl hexyl) phthalate adduct [M+H+DHEP](+). The collision induced dissociation (CID) on ceramides at m/z 622.7337, 636.7645, 650.7789, 664.7925 and 678.8130 conducted at low-collision energy produced well characteristic product ions at m/z 252.31, 264.32, 278.33, 282.33 and 296 .35 for d18:1 sphingosine regardless of the length of the fatty chain. The MS/MS of the Phthalate adduct [M+H+DHEP](+) at m/z 1013.1820, 1027.1971, 1041.2176, 1055.2394 and 1069.2573 also yielded characterizing product ions for sphingosine and confirmed the molecular ion at m/z 391 for bis (2-ethyl hexyl) phthalate. The major ions in the [M+H](+) and [M+H+DHEP](+) were due to neutral loss of [M+H-H(2)O](+) and [M+H(H(2)O)(2)](+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号