首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study described here, the surface structure of a self-assembly octyl hydroxamic acid at a calcium fluoride (CaF(2)) surface is evaluated using sum-frequency vibrational spectroscopy (SFVS). Of particular significance are the results that show octyl hydroxamic acid adsorbs at the fluorite surface from octanol solution and has more ordering and molecular conformation than the octyl hydroxamic acid adsorbed from solution. At the fluorite/0.1 M octyl hydroxamic acid octanol solution interface a bilayer-like structure consisting of an octyl hydroxamic acid layer in contact with fluorite and a tilted alcohol layer was observed by SFVS. The alcohol molecules are oriented with respect to the hydroxamic acid monolayer with the OH groups directed towards the bulk alcohol phase and the terminal CH(3) group oriented to face the alkyl chains of the hydroxamic acid monolayer.  相似文献   

2.
Sum-frequency generation vibrational spectroscopy was used to investigate the surface molecular structure of binary mixtures of water and alcohol (methanol, ethanol, and propanol) at the air/liquid interface. In this study, it is shown that the sum-frequency signal from the alcohol molecules in the CH-stretch vibration region is always larger for mixtures than that from pure alcohol. For example, the sum-frequency signal from a propanol mixture surface at a 0.1 bulk mole fraction was approximately 3 times larger than that from a pure propanol surface. However, the ratio between the sum-frequency signals taken at different polarization combinations was found to be constant within experimental errors as the bulk alcohol concentration was changed. This suggested that the orientation of surface alcohol molecules does not vary appreciably with the change of concentration and that the origin of the signal enhancement is mainly due to the increase in the surface number density of alcohol molecules contributing to the sum-frequency signal for the alcohol/water mixture as compared to the pure alcohol surface.  相似文献   

3.
The infrared-visible sum-frequency generation (SFG) vibrational spectroscopy was used to probe enzymatic activity of Thermomyces lanuginosus lipase (TLL) at air/water interface. A monolayer of amphiphilic O-palmitoyl-2,3-dicyanohydroquinone (PDCHQ), containing target ester group and two CN groups serving as vibrational markers, was utilized as an enzyme substrate. SFG data revealed the detailed molecular scale structure and properties of the PDCHQ layer at the interface. In particular, we demonstrate that hydrophilic headgroup of PDCHQ is mainly in the form of an oxyanion, and the enzyme-induced cleavage of the ester bond could be spectroscopically monitored by the disappearance of the intense C tripple bond N resonance at 2224 cm(-1). The enzymatic nature of the ester bond cleavage was confirmed by the control experiments with deactivated S146A mutant variant of TLL. By comparing action of wild type (WT) TLL and its inactive S146A mutant, it was shown that two effects take place at the interface: disordering of the lipid monolayer due to the adsorption of enzyme and enzymatic cleavage of the ester bond. The concentration of enzyme as low as 10 nM could be easily sensed by the SFG spectroscopy. We present spectroscopic evidence that upon hydrolysis one of the products, 2,3-dicyanohydroquinone, leaves the surface, while the other, palmitic acid, remains at air/water interface in predominantly undissociated form with the mono-hydrogen-bonded carbonyl group. Strong amide I (1662 cm(-1)) and amide A (3320 cm(-1)) SFG signals from TLL suggest that enzyme molecules position themselves at air/water interface in an orderly fashion. Presented work demonstrates the potential of SFG spectroscopy for in situ real-time monitoring of enzymatic processes at air/water interface.  相似文献   

4.
Sum-frequency vibrational spectroscopy was used to study interfacial structure of methanol:water mixtures at an octyltrichlorosilane-covered hydrophobic surface. Methanol was found to adsorb preferentially than water at the interface with its methyl group tilted from the surface normal by approximately 35 degrees for all methanol concentrations. Redshift of the methanol symmetric stretch mode, gradual disappearance of the water dangling-OH mode, and blueshifts of the dangling and liquidlike bonded-OH modes were also observed as the methanol concentration increased. They could be understood from the change of the interfacial hydrogen-bonding network associated with the change of surface composition.  相似文献   

5.
Hydroxamic acids are metal‐binding compounds used by micro‐organisms and possess applications in medicine and industry. Hydroxamic acids favor two conformations, E and Z; metal binding is limited to the Z conformation. The Z conformation may be identifiable by NOE spectroscopy, but analysis is complicated by the potential for long‐range coupling as well as for relayed NOEs due to conformational switching. In this report, we re‐examine the reported conformational preference of N‐methyl acetohydroxamic acid (NMHA) in D2O using NOE spectroscopy. We find that the favored conformation of NMHA in aqueous solution is the E conformation, contrary to an earlier report. NOE build‐up curves are proposed as a valuable tool to probe conformational behavior in similar systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The air/water interface was simulated and the mode amplitudes and their ratios of the effective nonlinear sum-frequency generation (SFG) susceptibilities (A(eff)'s) were calculated for the ssp, ppp, and sps polarization combinations and compared with experiments. By designating "surface-sensitive" free OH bonds on the water surface, many aspects of the SFG measurements were calculated and compared with those inferred from experiment. We calculate an average tilt angle close to the SFG observed value of 35, an average surface density of free OH bonds close to the experimental value of about 2.8 × 10(18) m(-2), computed ratios of A(eff)'s that are very similar to those from the SFG experiment, and their absolute values that are in reasonable agreement with experiment. A one-parameter model was used to calculate these properties. The method utilizes results available from independent IR and Raman experiments to obtain some of the needed quantities, rather than calculating them ab initio. The present results provide microscopic information on water structure useful to applications such as in our recent theory of on-water heterogeneous catalysis.  相似文献   

8.
Sum-frequency vibrational spectroscopy was used to study the protonated R-plane (1102) sapphire surface. The OH stretch vibrational spectra show that the surface is terminated with three hydroxyl moieties, two from AlOH(2) and one from Al(2)OH functional groups. The observed polarization dependence allows determination of the orientations of the three OH species. The results suggest that the protonated sapphire (1102) surface differs from an ideal stoichiometric termination in a manner consistent with previous X-ray surface diffraction (crystal truncation rod) studies. However, in order to best explain the observed hydrogen-bonding arrangement, surface oxygen spacing determined from the X-ray diffraction study requires modification.  相似文献   

9.
The air/liquid interface of a room temperature ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTf), is investigated using infrared-visible sum frequency generation (SFG) spectroscopy. The SFG spectra clearly show low-frequency modes [CF 3-symmetric stretching (ss) mode and SO 3-symmetric stretching (ss) mode] of the OTf anion, demonstrating the existence of anions polar oriented at the interface. The amplitude of the CF 3-ss peak of the OTf anion has the opposite sign with respect to that of the SO 3-ss peak, indicating that OTf anions at the surface have polar ordering where the nonpolar CF 3 group points away from the bulk into the air, whereas the SO 3 group points toward the bulk liquid. The line width of the SFG peak from the submerged SO 3 group is appreciably narrower than that from IR absorption, suggesting the environment of the surface OTf anions is much more homogeneous than that of the bulk. The vibrational calculations also suggest that the anions and the cations form a more specific aggregated configuration at the surface as compared to the bulk.  相似文献   

10.
In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.  相似文献   

11.
Vibrational sum frequency generation setup for the study of Langmuir film of cavitands molecules deposited at the water surface.  相似文献   

12.
The orientation of alkyl sulfonyl side-chains on a series of polyoxyethylenes, CH3nSE (n?=?6, 8 or 10), and the effect of annealing and rubbing on the molecular orientation of the alkyl side-chains at the substrate surface, were investigated using sum-frequency generation (SFG) vibrational spectroscopy. Based on the SFG spectra and their quantitative interpretation, we deduced that the alkyl chains of CH3–10SE are almost vertically oriented at the surface and that the terminal methyl groups of the alkyl chains are tilted from the surface normal as much as θ ≈ 40?±?5°, with a broad distribution of tilt angles. We also found that rubbing treatment induced the anisotropic orientation of the alkyl side-chains perpendicular to the rubbing direction, but their orientation was unchanged by annealing.  相似文献   

13.
Interfacial properties of colloid-polymer mixtures are examined within an effective one-component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective potentials, and a free energy functional is used that treats colloid excluded volume correlations within Rosenfeld's fundamental measure theory, and depletion-induced attraction within first-order perturbation theory. This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to surface properties near a hard wall, to the depletion interaction between two walls, and to the fluid-fluid interface of demixed colloid-polymer mixtures. The results of the present theory compare well with predictions of a fully two-component representation of mixtures of colloids and ideal polymers (the Asakura-Oosawa model) and allow a systematic investigation of the effects of polymer-polymer interactions on interfacial properties. In particular, the wall surface tension is found to be significantly larger for interacting than for ideal polymers, whereas the opposite trend is predicted for the fluid-fluid interfacial tension.  相似文献   

14.
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.  相似文献   

15.
The role of nitrogen in the charge transfer and storage capacity of lithium-intercalated heterocyclic oligophenylenes was investigated using photoelectron spectroscopy. The development of new occupied states at low binding energies in the valence band region, as well as core level chemical shifts at both carbon and nitrogen sites, demonstrates partial charge transfer from lithium atoms to the organic component during formation of the intercalated compound. In small compounds, i.e., biphenyl and bipyridine derivatives, the position of the nitrogen heteroatom significantly affects the spacing between gap states in the Li-intercalated film; yet it has minimal effects on the charge storage capacity. In larger, branched systems, the presence of nitrogen in the aromatic system significantly enhances the charge storage capacity while the Li-N bond strength at high intercalation levels is significantly weakened relative to the nitrogen-free derivative. These observations have strong implications towards improved deintercalation processes in organic electrodes in lithium-ion batteries.  相似文献   

16.
The synthesis of squaric acid N-hydroxylamide esters 5 and amides 6 from dimethyl squarate 2a is described. These derivatives are analogues of the naturally occurring iron(III) chelator hydroxamic acid. On the basis of a comparative reactivity study, a concerted retro-Cope mechanism for the formation of the N-hydroxylamide esters 5 by reaction of dimethyl squarate with hydroxylamines is proposed. A preliminary iron(III) binding study of these hydroxamic acid analogues is presented, demonstrating binding of iron(III) to amides 6 in aqueous solutions, while the esters 5 did not show any sign of metal ion binding. 13C NMR spectroscopic data (chemical shift and spin-lattice relaxation time determination) of these and related derivatives delineate the resonance structures predominant in these molecules. The resonance structures of the derivatives rationalize their spectroscopic data, chemical reactivity, and iron(III) binding properties. Single-crystal X-ray structure analyses of squaric acid N-hydroxylamide ester 5b and squaric acid N-hydroxylamide amide 6c confirm their connectivity and provide structural evidence supporting the spectroscopically derived conclusions. The squaric acid N-hydroxylamides are potentially useful in the construction of chemosensors for iron(III).  相似文献   

17.
Dielectric spectroscopy measurements for aqueous urea solutions were performed at 298 K through a concentration range from 0.5 to 9.0 M with frequencies between 200 MHz and 40 GHz. Observed dielectric spectra were well represented by the superposition of two Debye type relaxation processes attributable to the bulk-water clusters and the urea-water coclusters. Our quantitative analysis of the spectra shows that the number of hydration water molecules is approximately two per urea molecule for the lower concentration region below 5.0 M, while the previous molecular dynamics studies predicted approximately six water molecules. It was also indicated by those studies, however, that there are two types of hydration water molecule in urea solution, which are strongly and weakly associated to the urea molecule, respectively. Only the strongly associated water was distinguishable in our analysis, while the weakly associated water exhibited the same dynamic feature as bulk water. This implies that urea retains the weakly associated water in the tetrahedral structure and, thus, is not a strong structure breaker of water. We also verified the model of liquid water where water consists of two states: the icelike-ordered and dense-disordered phases. Our dielectric data did not agree with the theoretical prediction based on the two-phase model. The present work supports the argument that urea molecules can easily replace near-neighbor water in the hydrogen-bonding network and do not require the presence of the disordered phase of water to dissolve into water.  相似文献   

18.
A theoretical study on the complexation of uranyl cation (UO2(2+)) by three different functional groups of a calix[6]arene cage, that is, two hydroxamic and a carboxylic acid function, has been carried out using density functional theory calculations. In particular, interaction energies between the uranyl and the functional groups have been used to determine their affinity toward uranyl, whereas pKa calculations give some information on the availability of the functional groups in the extraction conditions. On the one hand, calculations of the interaction energies have pointed out clearly a better affinity with the hydroxamic groups. The stabilization of this complex was rationalized in terms of a stronger electrostatic interaction between the uranyl cation and the hydroxamic groups. The presence of a water molecule in the first coordination sphere of uranyl does not destabilize the complex, and the most stable complex is obtained with two functional groups and two water molecules, leading to a coordination number of 8 for the central uranium atom. On the other hand, pKa theoretical evaluation shows that both hydroxamic (deprotonated on the oxygen site) and carboxylic groups are potential extractants in aqueous medium with a preference for carboxylic functions at low pH. Moreover, these data allowed to unambiguously identify the oxygen of the alcohol function as the favored deprotonation site on the hydroxamic function.  相似文献   

19.
对56种主要无机含氧酸盐进行了傅里叶变换红外-拉曼光谱测试,将其拉曼特征谱带进行了汇总.结合红外光谱对其特征谱带呈现的变化趋势进行了研究.实验表明,由主族元素组成的无机含氧酸根,当金属阳离子相同时,中心原子与氧原子的键能随中心原子的原子序数(或半径)的增大逐渐降低;含氧酸根相同时,同价态的金属阳离子,中心原子与氧原子的键能随阳离子原子序数(或半径)的增加而下降,同时价键不均等性趋于明显.拉曼谱带强度与电子云的偏移程度有关,原子序数(或半径)越大电子云偏移越强.  相似文献   

20.
The sum-frequency vibrational spectroscopy (SFVS) off electronic resonance on chiral liquids is analyzed using the approach of antisymmetric nonresonant vibrational Raman scattering tensor calculation, which is based on the direct Taylor expansion of electronic transition moments in vibrational normal coordinates. A single-excitation configuration interaction treatment is applied to compute the SFVS off electronic resonance for (R)-limonene molecules, and the model spectra compare favorably with experimental data. This direct evaluation approach may provide a method of computing antisymmetric nonresonant vibrational Raman polarizabilities and predicting and assigning the SFVS off electronic resonance on chiral liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号