首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the study described here, the surface structure of a self-assembly octyl hydroxamic acid at a calcium fluoride (CaF(2)) surface is evaluated using sum-frequency vibrational spectroscopy (SFVS). Of particular significance are the results that show octyl hydroxamic acid adsorbs at the fluorite surface from octanol solution and has more ordering and molecular conformation than the octyl hydroxamic acid adsorbed from solution. At the fluorite/0.1 M octyl hydroxamic acid octanol solution interface a bilayer-like structure consisting of an octyl hydroxamic acid layer in contact with fluorite and a tilted alcohol layer was observed by SFVS. The alcohol molecules are oriented with respect to the hydroxamic acid monolayer with the OH groups directed towards the bulk alcohol phase and the terminal CH(3) group oriented to face the alkyl chains of the hydroxamic acid monolayer.  相似文献   

2.
Four generations of monodendrons with multiple dodecyl alkyl tails (AA-N, N representing number of alkyl tails from 1 to 8), an azobenzene spacer group, and a carboxylic acid polar head have been studied at the air-water and air-solid interface using AFM, GIXD, X-ray reflectivity, and UV-vis spectrometry. The one and two tail molecules formed orthorhombic lateral packing with long-range intramonolayer ordering. Good agreement between molecular models and thickness measurements indicated that the one and two tail molecules orient along the surface normal. The increase in the cross-sectional mismatch caused by the presence of the multiple chains for the higher generations disrupted the long-range ordering and forced the alkyl tails to adopt quasi-hexagonal structure. The higher generations (AA-4 and AA-8) formed a kinked structure with the alkyl tails oriented perpendicular to the surface with the azobenzene group tilted at a large degree toward the surface. The photoisomerization behavior in dilute solutions, at the air-water interface, and for grafted layers demonstrated that lower generation monodendrons maintained the photochromic behavior after chemical grafting to the silicon substrates, although the confinement of the molecules in monolayers significantly increased the reorganization time.  相似文献   

3.
The organization of 1-butanol and 1-hexanol at the air-liquid interface of aqueous, aqueous ammonium bisulfate, and sulfuric acid solutions was investigated using vibrational broad bandwidth sum frequency generation spectroscopy. There is spectroscopic evidence supporting the formation of centrosymmetric structures at the surface of pure butanol and pure hexanol. At aqueous, ammonium bisulfate, and at most sulfuric acid solution surfaces, butanol molecules organize in all-trans conformations. This suggests that butanol self-aggregates. The spectrum for the 0.052 M butanol in 59.5 wt % sulfuric acid solution is different from the other butanol solution spectra, that is, the surface butanol molecules are observed to possess a significant number of gauche defects. Relative to surface butanol, surface hexanol chains are more disordered at the surface of their respective solutions. Statistically, an increase in the number of gauche defects is expected for hexanol relative to butanol, a six carbon chain vs a four carbon chain. Yet, self-aggregation of hexanol at its aqueous solution surfaces is not ruled out because the methylene spectral contribution is relatively small. The surface spectra for butanol and hexanol also show evidence for salting out from the ammonium bisulfate solutions.  相似文献   

4.
The spectroscopic investigation of the molecular vibrations of adsorbed branched and unbranched alkane molecules using helium atom scattering (HAS) provides evidence for the thermal formation of gauche defects in tetracosane (C24H50) monolayers above 200 K. HAS results for the vibration of tetracosane molecules perpendicular to the Pt(111) surface reveal a strong frequency decrease and peak broadening above the transition temperature which can be related to a reduction of the force holding the molecules to the surface. This reduction of the force is interpreted as being due to the thermal formation of gauche defects within the tetracosane molecules.  相似文献   

5.
Molecular dynamics simulations of sodium dodecyl sulfate (SDS)/dodecanol and SDS/hexadecanol monolayers at the air/water interface were investigated where the monolayer mixtures were prepared by two different configurations. In the first configuration, all of the dodecanol (or hexadecanol) molecules were placed together and also the SDS molecules were placed together in the surface area. In the second configuration, the dodecanol (or hexadecanol) molecules were uniformly distributed with the SDS molecules, forming a homogeneous mixture. The results showed that the alcohol tails are more ordered and thicker than the SDS tails in monolayers where the alcohol molecules are close to each other and separated from the SDS. However, the reverse trend is observed in monolayers where the SDS and alcohol molecules are well mixed; that is, the alcohol tails seem to have less order. Studies of how the SDS tails are affected by the presence of long chain alcohols are also discussed. Basically, by increasing the alcohol chain length, the order and the thickness of the SDS tails increased when those molecules were placed all together in a region of the surface area. When both surfactants were well mixed, the order and thickness of the SDS chains decreased as the alcohol chain length increased. Comparisons of the present results with actual experiments of similar systems were performed, and they showed similar tendencies.  相似文献   

6.
Amphiphilic discotic molecules with hydrophilic side branches consisting of hexaphenyl hexa-peri-hexabenzocoronene and hexabiphenyl hexa-peri-hexabiphenylcoronene as the aromatic core and hexa-substituted oligoethers as the branched peripheral chains have been synthesized, and their microstructure has been characterized. The discotic molecules based on dibranched oligoether side chains have been observed to self-organize into a well-ordered hexagonal columnar structure within liquid crystalline phases, which possessed an exceptionally high thermal stability and an unusually wide temperature range over >300 degrees C. We suggest that a combination of the large lateral dimensions of the rigid cores and disordered structure of the oxygen-containing branches tails is a driving force to the formation of a highly ordered columnar structure in the bulk state with enhanced molecular segregation. In contrast to the thermotropic phase behavior that favors the formation of highly ordered columnar aggregates through a strong stacking interaction, the hexabenzocoronene cores are packed in a face-on arrangement at the air/water interface and on solid surfaces with surface domains composed of an array of 7 x 7 molecules. We suggest a crablike molecular conformation and cluster-segregated monolayers with 6-fold symmetry and unusual face-on packing on a solid surface. Preliminary spectroscopic studies in the bulk state have shown that the molecules based on a hexaaromatic-substituted core may serve as functional supramolecular materials with high energy transfer characteristic within the columns due to near-perfect columnar ordering, which is unchanged over a wide temperature range. We believe that an absence of the crystallization phenomenon of side-branched oligoether chains is critical for the formation of long-range columnar ordering with strong intracolumnar correlation of conjugated disks important for high carrier mobility.  相似文献   

7.
The attachment of cells onto solid supports is fundamental in the development of advanced biosensors or biochips. In this work, we characterize cortical neuron adhesion, growth, and distribution of an adhesive layer, depending on the molecular structure and composition . Neuronal networks are successfully grown on amino-terminated alkanethiol self-assembled monolayer (SAM) on a gold substrate without adhesion protein interfaces. Neuron adhesion efficiency was studied for amino-terminated, carboxy-terminated, and 1:1 mixed alkanethiol SAMs deposited on gold substrates. Atomic force microscopy and X-ray photoelectron spectroscopy were used to measure the roughness of gold substrate and thickness of SAM monolayers. Conformational ordering and ionic content of SAMs were characterized by vibrational sum frequency generation (VSFG) spectroscopy. Only pure amino-terminated SAMs provide efficient neuronal cell attachment. Ordering of the terminal amino groups does not affect efficiency of neuron adhesion. VSFG analysis shows that ordering of the terminal groups improves with decreasing surface roughness; however the number of gauche defects in alkane chains is independent of surface roughness. We monitor partial dissociation of carboxy groups in mixed SAMs that implies formation of NH3+ neighbors and appearance of catanionic structure. Such catanionic environment proved inefficient for neuron adhesion. Surface roughness of metal within the 0.7-2 nm range has little effect on the efficiency of neuron adhesion. This approach can be used to create new methods that help map structure-property relationships of biohybrid systems.  相似文献   

8.
Monte Carlo simulations of the adsorption layer of octyl cyanide have been performed on the canonical (N, V, T) ensemble at 300 K. The systems simulated cover the range of octyl cyanide surface densities from 0.27 to 7.83 mumol/m2. The surface density value at which the saturation of the adsorption layer occurs is estimated to be 1.7 mumol/m2. At low surface densities, the main driving force of the adsorption is found to be the formation of hydrogen bonds between the water and octyl cyanide molecules, whereas at higher surface concentrations, the dipole-dipole attraction between the neighboring adsorbed octyl cyanide molecules becomes more important. At low surface concentrations, the water-octyl cyanide hydrogen bonds prefer tilted alignments relative to the interface; however, in the case of the saturated adsorption layer, the number of such hydrogen bonds is maximized, leading to the preference of these bonds for the orientation perpendicular to the interface. Contrary to nonionic surfactants of multiple hydrogen bonding abilities (e.g., 1-octanol, C8E3), the increasing surface concentration of octyl cyanide was not found to lead to considerable competition of the molecules for positions of optimal arrangement. As a consequence, the energy and geometry of the water-octyl cyanide hydrogen bonds are found to be insensitive to the octyl cyanide surface concentration.  相似文献   

9.
The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.  相似文献   

10.
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.  相似文献   

11.
A ternary mixture of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl phosphatidic acid (POPA), and cholesterol (CHOL) works effectively for a functional conformation of nicotinic acetylcholine receptor (nAChR) that can undergo agonist-induced conformation changes, but POPC alone can stabilize only a desensitized state of nAChR. To gain insights into the lipid mixture that has strong impact to nAChR functions, we performed more than 50 ns all atom molecular dynamic (MD) simulations at 303 K on a fully hydrated bilayer consisting of 240 POPC, 80 POPA, and 80 CHOL (3:1:1). The MD simulation revealed various interactions between different types of molecular pairs that ultimately regulated lipid organization. The heterogeneous interactions among three different constituents resulted in a broad spectrum of lipid properties, including extensive distributions of average area per lipid and varied lipid ordering as a function of lipid closeness to CHOL. Higher percentage of POPA than POPC had close association with CHOL, which coincided with relatively higher ordering of POPA molecules in their acyl chains near lipid head groups. Lower fraction of gauche dihedrals was also found in the same region of POPA. Although the CHOL molecules had the effects on the enhancement of surrounding lipid order, relatively low lipid order parameters and high fraction of gauche bonds were observed in the ternary mixture. Collectively, these results suggest that the dynamical structure of the ternary system could be determinant for a functional nAChR.  相似文献   

12.
We have investigated the surface ordering of a synthetic, asymmetric, fan-shaped dendrimer containing a carboxyl core and perfluorinated tails which was obtained by the esterification of the intermediary. X-ray diffraction patterns and transmission electron microscopy (TEM) images show the molecules self-assemble into a hexagonal, cylindrical mesophase. Surface pressure-area isotherms and Brewster angle microscopy measurements show the molecule forms a stable monolayer at the air-water interface with a single phase transition. As a condensed monolayer, the perfluorinated tails are well-packed with hexagonal symmetry with (10) spacing of approximately 0.5 nm from molecular-scale atomic force microscopy (AFM) images. Such dense molecular-scale packing has not been observed in other dendritic molecules thus far. Compared to the case of conventional dendritic molecules with alkyl tails, these molecules occupy a much smaller molecular area due to the strong microphase separation between the carboxylic core and perfluorinated tails at the air-water interface. After monolayer collapse, the irregular islands with terrace morphology are observed in contrast with conventional alkyl-terminated self-assembled dendritic molecules where irregular islands do not appear. The interfacial and internal structure of every terrace shows planar columnar morphology from AFM and TEM imaging. From these results, we discuss the stability of perfluorinated, self-assembled dendrimers on water, as well as how to generate planar morphology on a hydrophilic surface.  相似文献   

13.
Adsorption and ordering at the vapor-liquid interfaces of mutually saturated water/1-butanol solutions at a temperature of 298.15 K were investigated using configurational-bias Monte Carlo simulations in the Gibbs ensemble and compared to the surface properties of neat water and 1-butanol liquids. A dense 1-butanol monolayer is observed at the surface of the water-rich phase, which results in a substantial decrease of its surface tension. In contrast, there is no enrichment of water molecules at the surface of the butanol-rich phase, and its surface tension is not significantly changed. Analysis of the interfacial structures reveals that these systems exhibit orientational ordering and composition heterogeneity. Analysis of the hydrogen-bonding distributions suggests that the formation of the 1-butanol monolayer is driven by an excellent match between water and the primary alcohol; that is, additional hydrogen bonds are formed between the excess free hydrogens of surface water and the excess hydrogen-bond acceptor sites of 1-butanol.  相似文献   

14.
It has been found that lipase fromCandida cylindracea hydrolyzes octyl R(+)- but not S(-)-2-chloropropionate. At the same time, the enzyme exhibits no appreciable stereoselectivity in the hydrolysis of the methyl ester of the same acid. Solubility determination experiments showed that at the concentrations used, methyl 2-chloropropionate was completely dissolved in water, whereas the octyl ester existed as an emulsion in water. It is therefore speculated that in order to express its stereoselectivity the lipase needs to adsorb on the substrate—water interface. R,S-2-chloropropionic acid was preparatively resolved via yeast lipase-catalyzed asymmetric hydrolysis of its octyl ester. Gram quantities of R(+)-chloropropionic acid and octyl S(-)-2-chloropropionate of high optical purity were readily prepared.  相似文献   

15.
We have examined the influence of two aspects of surfactant structure--tail branching and tail organization--on the orientational ordering (so-called anchoring) of water-immiscible, thermotropic liquid crystals in contact with aqueous surfactant solutions. First, we evaluated the influence of branches in surfactant tails on the anchoring of nematic liquid crystals at water-liquid crystal interfaces. We compared interfaces that were laden with one of three linear surfactants (sodium dodecyl sulfate, sodium dodecanesulfonate, and isomerically pure linear sodium dodecylbenzenesulfonate) to interfaces laden with branched sodium dodecylbenzenesulfonate. We carried out these experiments at 60 degrees C, above the Krafft temperatures of all the surfactants studied, and used the liquid crystal TL205 (a mixture of cyclohexane-fluorinated biphenyls and fluorinated terphenyls), which forms a nematic phase at 60 degrees C. Linear surfactants caused TL205 to assume a perpendicular orientation (homeotropic anchoring) above a threshold concentration of surfactant and parallel orientation (planar anchoring) at lower concentrations. In contrast, branched sodium dodecylbenzenesulfonate caused planar anchoring of TL205 at all concentrations up to the critical micelle concentration of the surfactant. Second, we used sodium dodecanesulfonate and a commercial linear sodium dodecylbenzenesulfonate to probe the influence of surfactant tail organization on the orientations of liquid crystals at water-liquid crystal interfaces. Commercial linear sodium dodecylbenzenesulfonate, which comprises a mixture of ortho and para isomers, has been previously characterized to form less ordered monolayers than sodium dodecanesulfonate at oil-water interfaces at room temperature. We found sodium dodecanesulfonate to cause homeotropic anchoring of both TL205 and 4'-pentyl-4-cyanobiphenyl (5CB, nematic at room temperature), whereas commercial linear sodium dodecylbenzenesulfonate caused predominantly planar and tilted orientations of both TL205 and 5CB. These results, when combined, lead us to conclude that (1) interactions between the aliphatic tails of surfactants and liquid crystals largely dictate the orientations of liquid crystals at aqueous-liquid crystal interfaces, (2) the interactions that orient the liquid crystals at these interfaces are sensitive to the branching and degree of disorder in the surfactant tails, and (3) differences in the chemical composition of TL205 and 5CB, most notably fluorination of TL205, lead to subtle differences in the orientations of these two nematic liquid crystals.  相似文献   

16.
Langmuir monolayers of mixtures of straight-chain and branched molecules of hexadecanol and eicosanol were studied using surface pressure-area isotherms, Brewster angle microscopy, and interfacial rheology measurements. For hexadecanol mixtures below 30% branched molecules, the isotherms show a lateral shift to a decreasing area proportional to the fraction of straight chains. Above a 30% branched fraction, the isotherms are no longer identical in shape. The surface viscosities of both straight and mixed monolayers exhibit a maximum in the condensed untilted LS phase at pi = 20 mN/m. Adding branched chains results in a nonmonotonic increase in surface viscosity, with the maximum near 12% branched hexadecanol. A visualization of these immiscible monolayers using Brewster angle microscopy in the liquid condensed phase shows the formation of discrete domains that initially increase in number density and then decrease with increasing surface pressure. Eicosanol mixtures exhibit different rheological and structural behavior from hexadecanol mixtures. The addition of branched chains results in a lateral shift to increasing area, proportional to the fraction and projected area of both straight and branched chains. A phase transition is seen for all mixtures, including pure straight chains, at pi = 15 mN/m up to 50% branched chains. A second transition is seen at pi = 25 mN/m when the isotherms cross over. Above this transition, the isotherms shift in the reverse direction with increasing branched fraction. The surface viscosities of both straight and mixed monolayers show a maximum in the L2' phase near pi = 5 mN/m. The surface viscosity is constant for low branched fractions and decays beyond 15% branched chains.  相似文献   

17.
We have used a scanning tunneling microscope (STM) to manipulate heteroleptic phthalocyaninato, naphthalocyaninato, and porphyrinato double-decker (DD) molecules at the liquid-solid interface between 1-phenyloctane solvent and graphite. We employed nanografting of phthalocyanines with eight octyl chains to place these molecules into a matrix of heteroleptic DD molecules; the overlayer structure is epitaxial on graphite. We have also used nanografting to place DD molecules in matrices of single-layer phthalocyanines with octyl chains. Rectangular scans with a STM at low bias voltage resulted in the removal of the adsorbed DD molecular layer and substituted the DD molecules with bilayer-stacked phthalocyanines from phenyloctane solution. Single heteroleptic DD molecules with lutetium sandwiched between naphthalocyanine and octaethylporphyrin were decomposed with voltage pulses from the probe tip; the top octaethylporphyrin ligand was removed, and the bottom naphthalocyanine ligand remained on the surface. A domain of decomposed molecules was formed within the DD molecular domain, and the boundary of the decomposed molecular domain self-cured to become rectangular. We demonstrated a molecular "sliding block puzzle" with cascades of DD molecules on the graphite surface.  相似文献   

18.
A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes.  相似文献   

19.
The interfacial and aggregation behavior of the ABC-type amphiphilic molecules with semirigid dumbbell-shaped core and variable length of hydrophobic branched tails (R=(CH2)nCH3 with n=5 (1), 9 (2), 13 (3)) were investigated. At low surface pressure, smooth, uniform monolayers were formed at the air-water interface by molecules 1 and 2, whereas for molecule 3 unique 2D toroid aggregates have been formed. These aggregates were relatively stable within a range of surface pressure and spreading solution concentration. Upon compression, the 2D toroid aggregates collapsed into large, round 3D aggregates. Finally, the choice of spreading solvent has a great influence on aggregation formation into 2D or 3D micelles as a result of the variable balance of the hydrophobic interactions of branched tails and the pi-pi stacking interaction between aromatic segments.  相似文献   

20.
We report that phospholipid vesicles incorporating ligands, when captured from solution onto surfaces presenting receptors for these ligands, can trigger surface-induced orientational ordering transitions in nematic phases of 4'-pentyl-4-cyanobiphenyl (5CB). Specifically, whereas avidin-functionalized surfaces incubated against vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were observed to cause the liquid crystal (LC) to adopt a parallel orientation at the surface, the same surfaces incubated against biotinylated vesicles (DOPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-DOPE)) caused the homeotropic (perpendicular) ordering of the LC. The use of a combination of atomic force microscopy (AFM), ellipsometry and quantitative fluorimetry, performed as a function of vesicle composition and vesicle concentration in solution, revealed the capture of intact vesicles containing 1% biotin-DOPE from buffer at the avidin-functionalized surfaces. Subsequent exposure to water prior to contact with the LC, however, resulted in the rupture of the majority of vesicles into interfacial multilayer assemblies with a maximum phospholipid loading set by random close packing of the intact vesicles initially captured on the surface (5.1 ± 0.2 phospholipid molecules/nm(2)). At high concentrations of biotinylated lipid (>10% biotin-DOPE) in the vesicles, the limiting lipid loading was measured to be 4.0 ± 0.3 phospholipid molecules/nm(2), consistent with the maximum phospholipid loading set by the spontaneous formation of a bilayer during incubation with the biotinylated vesicles. We measured the homeotropic ordering of the LC on the surfaces independently of the initial morphology of the phospholipid assembly captured on the surface (intact vesicle, planar multilayer). We interpret this result to infer the reorganization of the phospholipid bilayers either prior to or upon contact with the LCs such that interactions of the acyl chains of the phospholipid and the LC dominate the ordering of the LC, a conclusion that is further supported by quantitative measurements of the orientation of the LC as a function of the phospholipid surface density (>1.8 molecules/nm(2) is required to cause the homeotropic ordering of the LC). These results and others presented herein provide fundamental insights into the interactions of phospholipid-decorated interfaces with LCs and thereby provide guidance for the design of surfaces on which phospholipid assemblies captured through ligand-receptor recognition can be reported via ordering transitions in LCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号