首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Analytical letters》2012,45(3):429-438
Baicalin, mainly isolated from Scutllaria baicalensis, has been reported to possess a wide range of biological activities. However, the information about the metabolic route and metabolites of baicalin was limited to the role of the human intestinal bacterial mixture. In this paper, four strains of bacteria including Bacteroides sp. 33 and 56, and Veillonella sp. 23 and 71 were isolated from human intestinal bacterial mixture and studied for their abilities to convert baicalin to different metabolites. A highly sensitive and specific ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method combined with mass defect filtering (MDF) provides high throughput capabilities for drug metabolism study. The chromatographic separation was performed on a 1.7 µm particle size C 18 column using gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of 4 metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation, and deglycosylation were the major metabolic pathways of baicalin in vitro. The present study provides important information about the metabolism of baicalin which will be helpful for fully understanding the impact of the intestinal bacteria on this active component. Furthermore, this work demonstrated the potential of the ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry approach for a rapid, simple, reliable, and automated identification of metabolites of natural products.  相似文献   

2.
In this paper, we discuss the capabilities of liquid chromatography coupled to mass spectrometry with a time-of flight system with accurate mass measurement for the detection and characterisation of drug metabolites in biological samples for anti-doping purpose. Urinary excretion samples of three selective oestrogen receptor modulators (SERMs) with a common triphenylethylene structure: clomiphene, toremifene, and tamoxifen, obtained after oral administration of a single dose of each drug, were analysed using a time-of-flight system, after automatic tuning and calibration of the equipment, in positive full scan mode using an electrospray ionisation source. Following this approach we detected most of all significant metabolites reported by others and postulated new metabolites, especially for toremifene, have been characterised: N-demethyl-3-hydroxy-4-methoxy-toremifene and 3- hydroxy-4-methoxy-toremifene; in addtiona to this, in the urinary excretion samples of toremifene some metabolites, without the characteristic chlorine isotope pattern, discarded in previous studies, that are also metabolites of tamoxifen, were identified. The lack of certified reference materials does not allow an accurate determination of the limit of detection (LODs) of all metabolites; however an estimation taking into account the response factor of similar compounds allows to estimate that all metabolites are clearly detectable in a range of concentration comprised between 10 ng mL(-1) and 30 ng mL(-1).  相似文献   

3.
Harderoporphyrin (2-vinyl-4,6,7-tripropionic acid porphyrin) and its metabolites in faeces of patients with hereditary coproporphyria (HCP) have been separated and characterized by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC/ESI-Q-TOFMS/MS). The metabolites identified were 2-ethyl-4,6,7-tripropionic acid porphyrin, 2-hydro-4,6,7-tripropionic acid porphyrin, 2-methoxyethyl-4,6,7-tripropionic acid porphyrin and 2-acetyl-4,6,7-tripropionic acid porphyrin. Isomers of harderoporphyrin derived from isomerization of harderoporphyrinogen were also detected.  相似文献   

4.
Ethoxidine (N-methyl-12-ethoxy-2,3,8,9-tetramethoxybenzo[c]phenanthridinium methylsulfonate salt) is a synthetic 2-methoxy-12-ethoxy derivative of the natural alkaloid fagaronine. This new inhibitor of DNA-topoisomerase I is considered as a potential antitumor agent with higher in vitro activity than fagaronine. In order to further improve the efficiency of ethoxidine, its in vitro biotransformation by hepatic monooxygenases and the structures of its metabolites were investigated by high-performance liquid chromatography (HPLC) combined with electrospray ionization tandem mass spectrometry (ESI-MS/MS) and accurate mass measurement by time-of-flight mass spectrometry (TOFMS). When ethoxidine was incubated with BNF-treated rat liver microsomes or with cells expressing different recombinant human cytochrome P450, the same four ethoxidine metabolites (m(1)-m(4)) were detected and were formed exclusively by CYP1A1. The structures of these metabolites were assigned from ESI-MS/MS mass spectra and compared with those of ethoxidine derivatives. Accurate mass measurements of in-source ESI-TOFMS fragment ions exhibited successive neutral losses of C(2)H(4) and CO for ethoxidine and its metabolites. Whereas a 15 Da loss (methyl radical) was observed for the metabolites m(1)-m(4) containing a quaternary ammonium group, a 16 Da loss (methane) was observed for ethoxidine and could have resulted from the presence of two methoxy groups at adjacent positions (C-2 and C-3). The proposed oxidative modifications of ethoxidine were further confirmed by determination of the number of exchangeable hydrogen atoms and by the proposed elemental compositions of the metabolites based on accurate mass measurements by TOFMS. Two major metabolites resulted from O-demethylation of ethoxidine; one was tentatively identified as 12-ethoxyfagaronine (m(3)) and the second as an O-demethylated ethoxidine isomer (m(4)). Two polar metabolites were shown to be O-demethylated (m(1)) and hydroxylated (m(2)) derivatives of 12-ethoxyfagaronine. When 12-ethoxyfagaronine was incubated under the same conditions as ethoxidine, m(2) was formed, thus supporting the proposal that 12-ethoxyfagaronine is the primary oxidative product of ethoxidine.  相似文献   

5.
Benzo[a]pyrene (BP) metabolites conjugated with glutathione, cysteine-glycine, cysteine, N-acetylcysteine, and sulfuric and glucuronic acids have been studied by microcolumn liquid chromatography-electrospray mass spectrometry with collision-induced dissociation (CID) on a hybrid double focusing magnetic sector-orthogonal time-of-flight tandem mass spectrometer equipped with a focal plane array detector. Negative-ion electrospray mass spectra of the conjugated BP metabolites showed strong [M – H]? ions. When the array detector was used, spectra were obtained from femtomoles of sample infused at mass resolutions of 5000 (full width at half maximum). Cone voltage fragmentation spectra show [M-H]? ions and fragment ions indicative of the BP moiety and/or the conjugating group. Linked scan CID spectra at constant B/E were found to contain structurally informative product ions from infusion of as little as 1 pmol of sample. CID spectra were also recorded by using the double focusing sectors for precursor ion selection and the orthogonal time-of-flight analyzer for product ion mass separation. The method was applied to the analysis of conjugated BP metabolites in the urine of germ-free rats given a single intraperitoneal dose of BP.  相似文献   

6.
The active ingredients of Scutellaria baicalensis Georgi, a valuable traditional Chinese medicine, are polyhydroxyflavones, namely baicalin, scutellarin and wogonoside. However, information about the metabolic routes, metabolites and even more the effect of chemical structure on the stability of the three has been limited. In this article, the three natural compounds were incubated with human fecal flora, respectively, and highly sensitive and specific ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry implementing the MetaboLynx? software method was used for the drug metabolism study. The chromatographic separation was performed on a 1.7-μm particle size Syncronis C18 column using a gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of ten metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation and deglycosylation were the major metabolic pathways of the three flavone glycosides in vitro, and the metabolic stability was closely related to the chemical structure. This study will be helpful for fully understanding the impact of intestinal bacteria on these active components. Furthermore, this work demonstrated the potential of the ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry approach with MetaboLynx for quite rapid, simple, reliable and automated identification of metabolites of natural products.  相似文献   

7.
《Analytical letters》2012,45(13):1749-1763
Drug metabolism studies in vitro were carried out inexpensively and readily to serve as an adequate mechanism to characterize drug metabolites, elucidate their pathways, and make suggestions for further testing in vivo. In this work, the comparative metabolism of mequindox (MEQ) was investigated in vitro by incubation with chicken liver microsomes, hepatocytes, and intestinal microflora, followed by analysis using ultra-performance liquid chromatography coupled with electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for structure identification. There were 12 metabolites detected when MEQ was incubated with liver microsomes, 6 metabolites with the hepatocytes and 4 metabolites with intestinal microflora, respectively. The major metabolites in liver microsomes were bideoxymequindox and 2-isoethanol-N1-deoxymequindox, and that in hepatocytes were 2-isoethanol mequindox and 2-isoethanol-N1-deoxymequindox, but in intestinal incubations, N1-deoxymequindox and bideoxymequindox were the major metabolites. The results indicated that the metabolism of MEQ was active in vitro; meanwhile, revealed the main metabolic pathways of MEQ were N→O group reduction, carbonyl reduction and hydroxylation reaction. The information regarding in vitro metabolism of MEQ provided a better understanding of the role of the liver and intestinal tract in the disposition of MEQ.  相似文献   

8.
A new combined doping control screening method for the analysis of anabolic steroids in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS) has been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. The developed method allowed the detection of representative prohibited substances, in addition to steroids, at concentrations of 10 ng/mL for anabolic agents and metabolites, 30 ng/mL for corticosteroids, 500 ng/mL for stimulants and beta-blockers, 250 ng/mL for diuretics, and 200 ng/mL for narcotics. Sample preparation was based on liquid-liquid extraction of hydrolyzed human urine, and the final extract was analyzed as trimethylsilylated derivatives in GCoaTOFMS and underivatized in LCoaTOFMS in positive ion mode. The sensitivity, mass accuracy, advantages and limitations of the developed method are presented.  相似文献   

9.
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.  相似文献   

10.
Xu  Jun  Qian  Dawei  Jiang  Shu  Guo  Jianming  Shang  Er-xin  Duan  Jin-ao  Yang  Jing 《Chromatographia》2013,76(15):975-983

The active ingredients of Scutellaria baicalensis Georgi, a valuable traditional Chinese medicine, are polyhydroxyflavones, namely baicalin, scutellarin and wogonoside. However, information about the metabolic routes, metabolites and even more the effect of chemical structure on the stability of the three has been limited. In this article, the three natural compounds were incubated with human fecal flora, respectively, and highly sensitive and specific ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry implementing the MetaboLynx™ software method was used for the drug metabolism study. The chromatographic separation was performed on a 1.7-μm particle size Syncronis C18 column using a gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of ten metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation and deglycosylation were the major metabolic pathways of the three flavone glycosides in vitro, and the metabolic stability was closely related to the chemical structure. This study will be helpful for fully understanding the impact of intestinal bacteria on these active components. Furthermore, this work demonstrated the potential of the ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry approach with MetaboLynx for quite rapid, simple, reliable and automated identification of metabolites of natural products.

  相似文献   

11.
A standardised LC-UV-MS micro-scale method for screening of fungal metabolites and mycotoxins in culture extracts is presented. The paper includes data for detection and dereplication of > 400 fungal metabolites to facilitate detection and identification when standards are not available. The data also shows the types of components that can be analysed by positive electrospray (ESI+) mass spectrometry (MS) along with common fragments and adducts of these, as well as giving suggestions on whether UV or ESI+-MS methods should be used. Examples of dereplication of penitrems and macro-cyclic ichothecenes, and detection of several novel compounds are shown. This was done by UV spectroscopy combined with accurate mass determination of adduct and fragment ions obtained by high-resolution orthogonal time-of-flight MS.  相似文献   

12.
Neohesperidin as the major isoflavonoid in Aurantii Fructus has been investigated intensively. However, the route and metabolites of neohesperidin by human intestinal bacteria are not well understood and its metabolites may accumulate and exert physiological effects. In this work, 5 strains including Clostridium sp.8, Bacteroides sp.15, Bacillus sp.46, and Enterobacter sp.41-1 and sp.73 were isolated and their abilities to convert neohesperidin were studied. Human fecal microflora were prepared from a healthy Chinese woman and then anaerobically incubated with neohesperidin sample at 37 °C for 48 h. A rapid and simple liquid–liquid extraction method was used for sample pretreatment. A highly sensitive and specific ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry with MetaboLynx? method has been developed for the analysis of neohesperidin and related metabolites in the reaction samples. The chromatographic separation was performed on a 1.7 μm particle size Syncronis C18 column using gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmention mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of five metabolites were detected, the results indicated that hydrolysis, dehydroxylation, demethylation and acetylation were the major metabolism of neohesperidin. The present study provided important information about the metabolism of neohesperidin which will be helpful for fully understanding the impact of the intestinal bacteria on this active component. Furthermore, this work demonstrated the potential of the ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry approach using MetaboLynx? for quite rapid, simple, reliable and automated identification of metabolites of natural product.  相似文献   

13.
A high-resolution high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry method is described for the analysis of porphyrins in blood, urine and faeces. The gradient elution reversed-phase HPLC system using acetonitrile-methanol-1 m ammonium acetate/acetic acid buffer (pH 5.16) as gradient solvent mixtures was able to separate all porphyrin metabolites, including the type I and type III isomers of uroporphyrin, hepta-, hexa- and penta-carboxylic acid porphyrins and coproporphyrin. The porphyrins were positively identified by the protonated molecules [M+H](+) and further characterized by tandem mass spectrometric analysis with each porphyrin giving a characteristic collisioninduced dissociation product ion spectrum. The mass chromatograms obtained by HPLC/ESI MS are useful for the differential diagnosis of the porphyrias, since each type of porphyria has a typical porphyrin excretion pattern.  相似文献   

14.
We have evaluated (i) a multiplexed electrospray interface, (ii) serial sample introduction, and (iii) a quadrupole time-of-flight mass spectrometer for quantitative bioanalysis in compliance with good laboratory practice. These evaluations were done using a 96-well plate liquid chromatography-tandem mass spectrometry method for the quantitation of loratadine and its metabolite, descarboethoxyloratadine. The assay has a dynamic range of 1-1000 ng/ml with 5.56 pg of each analyte being injected on-column at the limit of quantitation. For the four-channel multiplexed electrospray experiments, one-run validations were performed simultaneously in rat, rabbit, mouse and dog plasma. In the four-stream serial experiments, the total run time of the assay was reduced from 3.5 to 0.35 min, resulting in a net acquisition time of 11 s. Four simulated validation runs with standard and quality control solutions were analyzed. Precision and accuracy for standards and quality control samples met US Food and Drug Administration recommended criteria for both the drug and the metabolite using those two approaches. In addition, a quadrupole time-of-flight mass spectrometer was used as a detector in the tandem mass spectrometry mode for the loratadine assay. Our results demonstrated that a dynamic range of three orders of magnitude could be achieved using the quadrupole time-of-flight mass spectrometer, making it useful for quantitation in preclinical toxicology studies.  相似文献   

15.
Ginsenoside Re is one of the major the bioactive triterpene saponins in ginseng root, a well-known adaptogen in traditional Chinese medicine. It is believed that the lead compound may be further developed into a promising new drug for preventing hypertension and cardiovascular disease. To better understand the pharmacological activities of the component, an investigation of its in vivo metabolism was necessary. In the present study, a high-performance liquid chromatography coupled with electrospray ionization and quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-TOF-MS/MS) has been applied to discover and identify the metabolites of ginsenoside Re in rat urine following intravenous and oral administration of the component, respectively. The rat urine samples were collected and pretreated through C18 solid-phase extraction cartridges prior to analysis. Negative electrospray ionization mass spectrometry was used to discern ginsenoside Re and its possible metabolites in urine samples. The metabolites were identified and tentatively characterized by means of comparing molecular mass, retention time, and fragmentation pattern of the analytes with those of the parent compound, ginsenoside Re. As a result, eleven and nine metabolites together with Re were detected and identified in rat urine collected after intravenous and oral administration, respectively. A possible metabolic pathway of ginsenoside Re was also investigated and proposed. Oxidation and deglycosylation were found to be the major metabolic processes of the constituent in rat.   相似文献   

16.
傅里叶变换利用红外光谱、粉末X射线衍射、微分热重分析、气相色谱-飞行时间质谱、紫外光谱、1H核磁滴定以及电喷雾质谱等分析手段对β-环糊精(β-CD)和亚砷酸钠(SA)形成的分子-离子加合物SA-β-CD进行了详细表征. 结果显示, 主-客体之间分子-离子相互作用是导致SA-β-CD的谱学特性(在固态或在溶液中)与热分解行为相异于主、客体自身行为的重要原因. 而在气相色谱-飞行时间质谱条件下发生的氧化还原反应以及在电喷雾质谱条件下出现的Na+-β-CD(摩尔比为1:1)超分子离子复合体进一步揭示了这种分子-离子加合作用的复杂性与独特性.  相似文献   

17.
An automated, routine method to obtain sub-ppm accurate mass data on a benchtop electrospray ionization time-of-flight (ESI-TOF) mass spectrometer is described. Standards in the mass range 114 to 734 Da were analyzed over a 5-day period to demonstrate intra- and interday precision and mean mass accuracy less than 1 ppm. One hundred drug discovery pharmaceutical compounds were used to demonstrate an absolute average mass accuracy of 0.47 +/- 0.31 ppm. This is in contrast to previous reports of accurate mass analysis using time-of-flight mass spectrometry (TOFMS) technology that operates within 3 to 5 ppm. The same 100 samples were also analyzed using Fourier transform mass spectrometry (FTMS) technology and yielded comparable results to the TOFMS analysis.  相似文献   

18.
The isotope-coded affinity tag (ICAT) [1] technology enables the concurrent identification and comparative quantitative analysis of proteins present in biological samples such as cell and tissue extracts and biological fluids by mass spectrometry. The initial implementation of this technology was based on microcapillary chromatography coupled on-line with electrospray ionization tandem mass spectrometry. This implementation lacked the ability to select proteins for identification based on their relative abundance and therefore to focus on differentially expressed proteins. In order to improve the sample throughput of this technology, we have developed a two-step approach that is focused on those proteins for which the abundance changes between samples: First, a new software program for the automated quantification of ICAT reagent labeled peptides analyzed by microcapillary electrospray ionization time-of-flight mass spectrometry determines those peptides that differ in their abundance and second, these peptides are identified by tandem mass spectrometry using an electrospray quadrupole time-of flight mass spectrometer and sequence database searching. Results from the application of this approach to the analysis of differentially expressed proteins secreted from nontumorigenic human prostate epithelial cells and metastatic cancerous human prostate epithelial cells are shown.  相似文献   

19.
Mass spectrometric methods, including matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS), and nanospray ionisation/hybrid quadrupole time-of-flight mass spectrometry (nanoESI-QqTOFMS), were applied to characterize by mass fingerprinting the venom of the French Guyanese tarantula Theraphosa leblondi. Of these techniques direct nanoESI-QqTOFMS, which allowed the detection of 65 protonated molecules with high mass accuracy, appeared to give the best results. Three major peptides, TlTx1, TlTx2 and TlTx3, were sequenced using a combination of nanoESI-MS/MS and enzyme digestion/MS and MS/MS experiments. Each sequence was confirmed by automated Edman sequencing. In patch-clamp experiments these peptides were found to have a specific inhibitory effect on the voltage-dependent potassium channel, Kv4.2.  相似文献   

20.
The Future of Biological Mass Spectrometry   总被引:1,自引:0,他引:1  
Biological applications of mass spectrometry have grown exponentially since the discovery of MALDI and electrospray ionization techniques. This growth has been further fueled by the massive volume of DNA sequence information that is now available. An ambitious goal of some of this research is to monitor the level and modification of all proteins and metabolites in a biological sample such as plasma. A major research effort in mass spectrometry and related disciplines has been expended over the past several years toward reaching this and other less ambitious goals, and considerable progress has been made; but the presently available tools are clearly not sufficient for these very difficult tasks. In this “critical insight” discussion we suggest that recent advances in time-of-flight (TOF) technology with MALDI ionization may provide some important new tools for achieving the goals of biological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号