首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Radiation measurements》2007,42(4-5):891-893
Specific features of radiative and non-radiative relaxations of oxygen-deficient centres (ODC's) in nanostructured silicon dioxide were studied using optically stimulated electron emission and time-resolved photoluminescence. It was found that modifications of oxygen-deficient centres in the form of surface analogues can exist in nanostructured samples prepared by thermal decomposition of polysilazane in air. Photoluminescence of these centres was efficiently excited in the optical absorption bands of surface Es-centres and silicon clusters SiSiSi and could be associated with the intercentre energy transfer during their nonradiative relaxation. Specific features of thermally induced changes in the luminescence characteristics of the defects due to transformation of the structure of silica samples from amorphous to partially crystalline modification were established from analysis of the spectral composition and the decay kinetics of the photoluminescence.  相似文献   

2.
The main features of thermoluminescence (TL) of nanostructured ceramics based on anion-defective aluminum oxide have been investigated. The kinetic parameters of the TL dosimetric peak at 475 K have been determined. The possibility of using nanostructured ceramics for beta-radiation dosimetry of high doses (up to 1 kGy) with thermoluminescence of deep traps has been justified. It has been found that the light sum of the dosimetric peak decreases with an increase in the heating rate due to the temperature quenching of the luminescence. The obtained results have confirmed that the mechanism of TL quenching in anion-defective aluminum oxide is associated with the temperature dependence of the probability of the capture in deep traps, which can be caused by thermal ionization of excited states of F-centers.  相似文献   

3.
The luminescence spectra of aluminum oxide with an ordered system of through pores have been studied. The diameter and density of pores were ≈ 50 nm and 1.2 × 1010 cm?2, respectively. Amorphous aluminum oxide formed by anodization of aluminum foil in an oxalic acid electrolyte shows intense luminescence in the blue spectral region. Processing of spectra with the use of an oxalic acid approximation by Gaussian curves gives three bands peaking at ~ 382 (3.2 eV), 461 (2.7 eV), and 500 nm (2.5 eV), which correspond to different types of defects. The bands at 382 and 461 nm can be assigned to optical transitions involving F+ and F centers (vacancies of oxygen with one or two electrons), respectively. The lower-energy band near 500 nm can be presumably assigned to luminescence from F++ centers (vacancy of oxygen without an electron). Analysis of the luminescence excitation spectra has revealed an inhomogeneous character of the distribution of the corresponding luminescence centers in the Al2O3 matrix.  相似文献   

4.
Complex Ce4+-Nd3+ centers were formed in silica gel-glasses. These centers were characterized by weak cross-relaxation quenching of luminescence; an increased luminescence branching ratio in the 4F3/24I11/2, 4I13/2 transitions; strong structuring of the analogous spectral bands; and effective intracenter sensitization of luminescence. On reducing the Ce4+ ions to the triply charged state, the structure of the luminescence bands of Nd3+ ions became weaker and the ratio of their intensities approached the value typical of an Nd-containing silica gel-glass.  相似文献   

5.
A study is made of the luminescence of rare-earth-metal (REM)-doped anode oxide films (AOF) grown on aluminu. It is shown that REMs introduced into an AOF in the course of its formation exert a considerable influence on the position of the maximum half-width and the intensity of the luminescence spectrum of the matrix, i.e., Al2O3. Photoelectrochemical properties of AOF (Eu) are investigated. A dependence of the AOF photopotential on the conditions of its formation is shown. Belarusian State University of Information Science and Radioelectronics, 6, P. Brovka St., Minsk, 220600, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 4, pp. 593–596, July–August, 1998.  相似文献   

6.
铈掺杂氧化铝薄膜的蓝紫色发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
廖国进  闫绍峰  巴德纯 《物理学报》2008,57(11):7327-7332
应用中频反应磁控溅射技术制备了Al2O3:Ce3+的非晶薄膜.X射线光电子谱(XPS)检测显示薄膜中有Ce3+生成.这些薄膜的光致发光峰是在374nm附近,它来自于Ce3+离子的5d1激发态向基态4f1的两个劈裂能级的跃迁.发光强度强烈地依赖于薄膜的掺杂浓度,但发光峰位置不随掺杂浓度而变化.Ce3+含量和薄膜的化学成分是通过X射线散 关键词: 光致发光 2O3')" href="#">Al2O3 薄膜 稀土元素  相似文献   

7.
The microstructure, martensitic transformations, and properties of quasibinary shape memory TiNi-TiFe alloys produced by superrapid melt spinning (SMS) have been studied using transmission electron microscopy and X-ray diffraction analysis and by measuring some properties  相似文献   

8.
Transparent polymer materials, due to their unique properties, such as light weight, optical transparency, and electrical and mechanical properties, have become very attractive as a replacement for inorganic glass substrates in a wide range of optoelectronic applications. In this research, aluminum zinc oxide nanostructured thin film was deposited on polycarbonate polymer substrates using a magnetron sputtering technique. The structure, morphology, and surface composition of the thin film were investigated by X-ray diffraction and field emission scanning electron microscopy. The optical and electrical properties of the thin film were investigated by UV–VIS-NIR spectrophotometer, ellipsometer, and four point probe method. The X-ray diffraction pattern showed that the aluminum zinc oxide thin film had a polycrystalline structure. The optical and electrical results indicated that the refractive index, band gap, and sheet resistance of the aluminum zinc oxide thin film were 1.8, 3.2 eV, and 265 Ω/sq, respectively.  相似文献   

9.
The specific features of the absorption, photoluminescence, x-ray luminescence, thermally stimulated luminescence, and photostimulated luminescence spectra of CsBr: Eu2+ single crystals grown using the Bridgman method are investigated in the temperature range 80–500 K at the highest possible dopant content (0.1–0.4 mol % EuOBr in the batch) required for preparing perfect crystals. It is shown that an increase in the dopant content leads to a broadening of the absorption and photoluminescence excitation bands with maxima at wavelengths of 250 and 350 nm due to the interconfigurational transitions 4f7(8S7/2) → 4f65d(e g , t2g) in Eu2+ ions. The photoluminescence and photostimulated luminescence spectra of CsBr: EuOBr single crystals (0.1–0.4 mol % EuOBr) contain a band at a wavelength of λmax=450 nm and bands at wavelengths of λmax=508–523 and 436 nm. The last two bands are assigned to Eu2+-VCs isolated dipole centers and Eu2+-containing aggregate centers, respectively. It is revealed that the intensity of the luminescence associated with the aggregate centers (λmax=508–523 nm) is maximum at an EuOBr content of less than or equal to 0.1 mol % and decreases with an increase in the dopant content. The possibility of forming CsEuBr3-type nanocrystals that are responsible for the green luminescence observed at a wavelength λmax=508–523 nm in CsBr: Eu crystals is discussed. The intensity of photostimulated luminescence in the CsBr: EuOBr crystals irradiated with x-ray photons is found to increase as the dopant content increases. It is demonstrated that CsBr: EuOBr crystals at a dopant content in the range 0.3–0.4 mol % can be used as x-ray storage phosphors for visualizing x-ray images with high spatial resolution.  相似文献   

10.
The effect of surface tension on the activation energy for oxygen-ionic conduction in nanoceramics is considered. The activation energy is calculated for oxygen ion diffusion through oxygen vacancies, which are treated as dilatation centers. The activation energy is shown to decrease as the nanoparticle size decreases. Based on the size distribution function of nanoparticles, the activation energy distribution function is calculated. Analytical expressions are obtained for the dependences of the ionic conduction on temperature and nanoparticle size. The increase of two to three orders of magnitude in the oxygen-ionic conduction observed earlier in the ZrO2: 16% Y nanoceramics is adequately described by these expressions. The surface tension of nanoparticles is shown to cause a substantial increase in the oxygen-ionic conduction observed in nanoceramics; the main contribution to the conductivity is related to a region near the particle surface.  相似文献   

11.
Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 54, No. 4, pp. 605–610, April, 1991.  相似文献   

12.
Different concentrations of Tb3+ ion-doped gadolinium aluminum garnet (GAG) nanophosphors have been synthesized by solvothermal reaction method and sintered at 1300 °C. The XRD patterns confirm that the GAG phosphors sintered at 1300 °C have a garnet structure with single cubic phase. The calculated crystallite size is about 92 nm. The SEM images of the phosphors show the spherical morphology agglomerated with many small particles. The luminescence properties of these phosphors have been carried out by the emission and excitation spectra along with lifetime measurements. The excitation spectra of GAG:Tb3+ phosphors consist of three broad bands due to the 4f8→4f75d1 transition and some sharp peaks due to the 4f8→4f8 transition. The emission spectra of the phosphors reveal two colors, such as blue due to 5D37FJ transitions and green due to the 5D47FJ transitions. The dynamics of the phosphors have been investigated by decay curves and the cross-relaxation process and is observed at 0.5 mol% Tb3+ concentration.  相似文献   

13.
Impurity Cr3+ centers in submicron and nanostructured Al2O3 crystals of different phase compositions at temperatures of 300 and 7.5 K were studied by a luminescent vacuum ultraviolet (VUV) spectroscopy method. Photoluminescence (PL) spectra and the energies of 2E, 4T2, and 4T1 excited states of Cr3+ ion depend on the type of crystalline samples phase. The PL excitation spectrum of R-line in α-Al2O3 nanoscale crystals is formed by intracenter transitions (2.5–5.5 eV region), by charge transfer band (6.9 eV) and by effective formation of impurity-bound excitons (9.0 eV region). Such impurity-bound excitons correspond to O2p→Al3s electron transition in surroundings of an impurity Cr3+ center. The efficiency of impurity-bound excitons formation decreases with the increase of the grain size above 100 nm. The size dependence is noticeably shown in PL excitation spectra in VUV region. Excitons bound to impurity centers do not appear in nanostructured δ+θ-Al2O3 crystals. The effect of the electron excitation multiplication is observed distinctly in nanostrucured α-Al2O3 at an excitation energy above 19 eV (more than 2Eg).  相似文献   

14.
15.
16.
An algorithm and a program are developed to calculate the photoluminescence (PL) parameters for bulk single-crystal and nanoscale dielectrics excited with pulsed synchrotron radiation. The luminescence spectra of F and F + centers and the PL decay kinetics in single-crystal and nanoscale aluminum-oxide samples containing oxygen anion vacancies are calculated for various nanoparticle sizes. It is shown that a noticeable broadening of the bands and a decrease in the afterglow time is observed for nanoparticle sizes that are less than 20 nm.  相似文献   

17.
This is a study of the luminescence properties of coatings formed on aluminum alloys by anodizing in electrolytic solutions based on oxalic, sulfuric, and tartaric-sulfonic acids. At least two emission centers, with band maxima in the ranges of 390–410 and 470–510 nm, can be reliably identified in the photoluminescence spectra. The first type of center is characterized by single-band photoluminescence excitation spectra and the second, by two-band spectra. An analysis of the two-band photoluminescence excitation (PLE) spectra in the range of 470–510 nm shows that the position of the narrow short-wavelength PLE spectrum near 272 nm is independent of the type of acid used in the anodization process. The position and shape of the other PLE spectral bands depend both on the type of acid used and on the processing of the alloy or alumina surfaces. It is assumed that defect-free alumina centers are responsible for the 272 nm PLE band, while the other photoluminescence bands are caused primarily by different divacancies of oxygen (F2+ {F_2^+} , F 2, and F2+2 {F_2^{+2}} centers) whose origin is governed by the type of electrolyte.  相似文献   

18.
19.
The increasing interest in photonics in the field of communication has led to intense research work on silicon based nanostructures showing efficient photoluminescence. The present paper reports photoluminescence measurements obtained at room temperature in silicon-rich-silica-silica multilayers grown by reactive magnetron sputtering. The silicon nanograin size is controlled via the silicon layer thickness which can be monitored with high accuracy. We aim to develop a comprehensive understanding of the combined roles played by the quantum confinement effect through the silicon grain size and the existence of an interfacial region between the grain and the surrounding silica matrix. Two bands of photoluminescence are displayed in the 600 nm-900 nm range and correspond to the bands previously observed at 2 K. Their origin is demonstrated through a model based on the solution of the Schrödinger equation of the exciton wavefunction in a one-dimension geometry corresponding to the growth direction of the multilayers. The silicon layer as well as the Si-SiO2 interface thicknesses are the key parameters of the photoluminescence features.Received: 6 April 2004, Published online: 21 October 2004PACS: 78.67.-n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures - 73.21.Ac Multilayers - 71.23.An Theories and models; localized states  相似文献   

20.
The change in the intensity of the photoluminescence (PL) spectra of nematic liquid crystal (NLC) composites as a function of the concentration of CdSe/ZnS semiconductor quantum dots (QDs) and TiO2 and ZrO2 nanoparticles ~5 nm in diameter has been investigated. It is shown that the PL-quenching intensity in composites with CdSe/ZnS QDs exceeds that in composites with TiO2 and ZrO2 nanoparticles. The lowfrequency spectra of these composites with a concentration of 0.1 wt %, recorded in the range of 102–103 Hz, and the content of mobile ions in them have been investigated. It is found that the dielectric loss in the composite with CdSe/ZnS QDs is much higher and the content of mobile ions is larger by a factor of 3 than in the composites with TiO2 and ZrO2 nanoparticles. It is shown that an increase in the CdSe/ZnS QD concentration in NLC composites leads to an increase in the dielectric loss and a decrease in the PL intensity. Possible mechanisms of the interaction between NLC molecules and CdSe/ZnS QDs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号