首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Researchers work on different optimization methods to come up with preparation methods, which show the desired or targeted outcomes. Moreover, nowadays, research is more focused on developing formulations which contain biodegradable polymers. The objective of the present systematic study was to achieve the abovementioned goals by using a cationic ammonio methacrylate copolymer (Eudragit® RS100). A Double-emulsion solvent evaporation technique was used. This methodology was chosen because the particles formed by this method allow encapsulation of both hydrophilic and hydrophobic active molecules. It also has applications in diverse fields such as drug delivery, food, cosmetics, and pharmaceutical industries.

The aim of this research work was to investigate the influence of various process control parameters, such as stabilizer chemical nature and amount, ultra Turrax® stirring speed and time, the morphology, size, and size distribution of the final dispersions. Then, the prepared particles were characterized using a Scanning Electron Microscope (SEM) and a Laser Diffraction Particle Size Analyzer. This study helped us to know which parameters have a drastic effect on the colloidal properties of the particles.  相似文献   

2.
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.  相似文献   

3.
Separation of hydrazine from aqueous solutions with ethylcellulose membranes has been investigated by using the pervaporation technique. The effect of membrane thickness, concentration polarization, and feed concentration on flux and selectivity were evaluated. A separation mechanism is proposed based on the measurements of sorption, and diffusion coefficients, and estimations of Flory–Huggins interaction parameters and Hansen's solubility parameter. States of water, hydrazine, and hydrazine hydrate are explained with DSC spectra. The specific interaction sites in ethylcellulose matrix where the solvent interacts extensively with the polymer have been identified by FTIR analysis. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1969–1980, 1999  相似文献   

4.
The present investigation studied a novel extended release system of promethazine hydrochloride (PHC) with acrylic polymers Eudragit RLPO and Eudragit RS100 in different weight ratios (1 : 1 and 1 : 5) using coevaporation and coprecipitation techniques. Solid dispersions were characterized by Fourier-transformed infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) as well as solubility and in vitro dissolution studies in 0.1 n HCl (pH 1.2), double distilled water and phosphate buffer (pH 7.4). Adsorption test from drug solution to solid polymers were also performed. Selected solid dispersion system was subjected to direct compression and compressed tablets were evaluated for in vitro dissolution studies. The progressive disappearance of drug peaks in thermotropic profiles of coevaporates were related to increasing amount of polymers while SEM studies suggested homogenous dispersion of drug in polymer. Eudragit RLPO had a greater adsorptive capacity than Eudragit RS100 and thus its coevaporates in 1 : 5 ratio exhibited higher dissolution rate with 91.90% drug release for 12 h. Among different formulations, tablets prepared by Eudragit RLPO coevaporates (1 : 5) displayed extended release of drug for 12 h with 90.87% release followed by zero order kinetics (r(2)=0.9808).  相似文献   

5.
Cyclodextrins are cyclic oligosaccharides, capable of forming inclusion complexes with many active substances. This way, the aqueous solubility and rate of dissolution of active substances can be changed. For this research we have selected celecoxib as the model active substance, due to its low water solubility, high lipophilicity, and high intestinal permeability. Usually, the amount of cyclodextrin complex that can be incorporated into a pharmaceutical dosage form is limited. The usage of hydrophilic polymers can overcome this problem. In this study, we wanted to point out the potential of various types of hydrophilic polymers for enhancing the complex formation efficiencies, and to highlight the possible use of alginate as a solubility stabilizer/enhancer and as a microsphere matrix polymer. The phase solubility investigation showed greater stability constants (> 250 M?1) in ternary complexes than in the binary complex, which is a good indicator of the complex formation enhancer properties of these hydrophilic polymers. The relative solubilizing efficiency decreased in the next order: PVP K25 (6.49) > Sodium alginate (6.26) > PEG 6000 (5.72) > without polymer (4.81). The DSC curves showed that all samples that were prepared with β-cyclodextrin (both complexes and physical mixtures) had lower melting endotherms at 160 °C than pure celecoxib. XRD confirmed the complex formation by partial celecoxib amorphisation. The dissolution studies of the prepared microspheres revealed that all samples had different release rates (shown by the similarity factor f2, which was 36.37, 42.46 and 38.11 % respectively) and that the use of β-cyclodextrin increased the dissolution rate of celecoxib from alginate microspheres in a controlled manner. We concluded that sodium alginate could act as a complex stabilizing/enhancing agent and as a microsphere matrix polymer, at the same time.  相似文献   

6.
The objective of the present study was to formulate naproxen-eudragit RS100 nanoparticles and investigate the physicochemical characteristics of the prepared nanoparticles. The nanoparticles of naproxen with eudragit RS100 were formulated using the solvent evaporation/extraction technique (the single emulsion technique). The effect of several process parameters, i.e., drug/polymer ratio, aqueous phase volume and speed of homogenization were considered on the size of the nanoformulations. The physicochemical characteristics of nanoparticles were studied applying particle size analysis, differential scanning calorimetry, X-ray crystallography, Fourier transform infrared spectroscopy and scanning electron microscopy. The release rate of naproxen from various drug/polymer nanoparticles was investigated as well. All the prepared formulations using eudragit RS100 resulted in nano-range size particles with relative spherical smooth morphology. The nanoparticles of naproxen-eudragit RS100 displayed lower crystallinity. The intermolecular interaction between naproxen and eudragit RS100 was detected in the FT-IR spectrum of the nanoparticles. All the nanoparticles displayed a slowed release pattern with the reduced burst release in comparison with the intact drug powder and physical mixtures of drug and polymer. According of these findings, formulation of the naproxen-eudragit RS100 nanoparticles was able to improve the physicochemical characteristics of the drug and possibly will increase the anti-inflammatory effects of drug following its ocular or intra-joint administration.  相似文献   

7.
Eudragit® E/HCl salt (E–SD) displays a good antireprecipitation effect on solid dispersion formulations of poorly water-soluble drugs. To elucidate the mechanism underlying the antireprecipitation effect of E–SD, a study on supersaturation was conducted using a dissolution test method with test fluids at varying pH and ionic strength values. Both pH and ionic strength of the test fluid were shown to influence the antireprecipitation effect of E–SD; a strong antireprecipitation effect was observed at a neutral pH (pH?6~7) and an ionic strength of 0.1 to 1.0. To investigate E–SD in its dissolved state in each test fluid, fluorescence measurement using pyrene as a probe molecule and dynamic light-scattering (DLS) measurement were conducted. The total fluorescence intensity of pyrene increased with increasing E–SD concentrations. Further, small nanoparticles were observed using DLS measurement. These results suggest that E–SD may form a micelle-like structure in the dissolved test fluid.  相似文献   

8.
Diethylcarbamazine citrate (DEC) is the main drug used in the lymphatic filariasis treatment. This study aimed to evaluate drug-excipient compatibility of binary mixtures (BMs) (1:1, w/w), initially by differential scanning calorimetry (DSC), and subsequently, if there were any interaction evidence, by complementary techniques, such as thermogravimetric (TG), non-isothermal kinetics, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). For the analyses of the BMs by DSC, we selected those with Tabletose®, representing the excipients containing lactose, polivinilpirrolidona (PVP), and magnesium stearate (MgS). The additional analyses by FT-IR and XRD showed no interaction evidence. The TG curves of DEC–Tabletose® showed no signs of interaction, unlike the TG curves of PVP and MgS, confirming the results of non-isothermal kinetics, in which the BMs with PVP and MgS decreased the reaction activation energy. Thus, it was concluded after evaluation that the excipients, especially the PVP and MgS, should be avoided.  相似文献   

9.
以水作相分离造孔剂制备P(VDF-HFP)/PMMA聚合物电解质膜   总被引:6,自引:0,他引:6  
介绍了一种以水代替常用的有机物质作为相分离造孔剂制备混合型聚合物电解质的新方法.所研究的混合型聚合物为聚(偏二氟乙烯-六氟丙烯)和聚甲基丙烯酸甲酯的混合物.扫描电镜SEM图表明这种混合型聚合物膜具有蜂窝状结构,有利于膜电导率的增加.利用FTIR,XRD和DSC等方法研究了混合型聚合物电解质中两种聚合物间的相互作用.用电化学交流阻抗方法测得在30℃下P(VDF-HFP)/PMMA摩尔比为1:1的混合型聚合物电解质的离子电导率为0.804×10-3S/cm.对照其它方法,本方法具有制备容易、成本较低和有利于环境保护等优点.  相似文献   

10.
Targeted drug delivery systems are a very convenient method of treating inflammatory bowel disease. The properties of pectin make this biopolymer a suitable drug carrier. These properties allow pectin to overcome the diverse environment of the digestive tract and deliver the drug to the large intestine. This investigation proposed bipolymeric formulations consisting of the natural polymer pectin and a synthetic polymer containing the drug 5-aminosalicylic acid. Pectin beads were prepared via ionotropic gelation involving the interaction between the hydrophilic gel and calcium ions. The obtained formulations consisted of natural polymer, 5-aminosalicylic acid (5-ASA) and one of the synthetic polymers, such as polyacrylic acid, polyvinylpyrrolidone, polyethylene glycol or aristoflex. The release of the drug was carried out employing a basket apparatus (USP 1). The acceptor fluid was pH = 7.4 buffer with added enzyme pectinase to reflect the colon environment. The amount of the released drug was determined using UV-Vis spectrophotometry at a wavelength of λ = 330 nm. The kinetics of the drug dissolution revealed that none of the employed models was appropriate to describe the release process. A kinetic analysis of the release profile during two release stages was carried out. The fastest drug release occurred during the first stage from a formulation containing pectin and polyethylene glycol. However, according to the applied kinetic models, the dissolution of 5-ASA was rather high in the formulation without the synthetic polymer during the second stage. Depending on the formulation, 68–77% of 5-ASA was released in an 8-hour time period. The FTIR and DSC results showed that there was no interaction between the drug and the polymers, but interactions between pectin and synthetic polymers were found.  相似文献   

11.
Human Papilloma Virus (HPV) infections are the major cause of cervical cancers. To achieve a better therapeutic efficacy and patient compliance in the treatment for HPV-induced cervical cancers, anticancer agent 5-fluorouracil has been formulated in a vaginal gel using the thermosensitive polymer Pluronic® F127 together with alternative mucoadhesive polymers e.g., hyaluronic acid, Carbopol 934 and hydroxypropylmethylcellulose. To increase its aqueous solubility and to achieve the complete release of 5-FU from the gel, the drug was incorporated as its inclusion complex with 1:1 molar ratio with either β-cyclodextrin or hydroxypropyl-β-cyclodextrin. Following the characterization of drug:CD complexes, thermosensitive gel formulations containing different mucoadhesive polymers and the drug in free or complexed form were characterized in vitro by determining the gelation temperature and the rheological behavior of different formulations along with the in vitro release profiles of these formulations in pH 5.5 citrate buffer. It was observed that complexation with cyclodextrin accelerated the release of 5-FU with the exception of formulation containing Carbopol 934 as mucoadhesive polymer. As far as rheological properties are concerned, favorable thermosensitive in situ gelling properties were obtained with formulations containing HPMC as mucoadhesive polymer. Complete release of 5-FU from gels were obtained with both complexes of β-CD and HP-β-CD and cytotoxicity studies against HeLa human cervical carcinoma cells demonstrated that 1% 5-FU:CD complexes were equally effective as 1% free 5-FU indicating better therapeutic efficacy with lower dose.  相似文献   

12.
A study was made of the possibilities of gradually decreasing the concentration of the toxic organic solvent in the process of microsphere preparation. Ammonio methacrylate copolymer-based microspheres were prepared by spray drying or conventional solvent evaporation techniques, and compared. The formulations were designed by varying the preparation methods and the concentrations of four polar cosolvents as independent variables. DSC was used to study the relationship between the changes in the independent variables and three of the main thermal events of the microspheres. Raman spectroscopy was used to investigate and confirm the possible interactions between drug and copolymer. Appropriate choice of the independent variables led to the molecularly dispersed drug in the polymer matrix. It was demonstrated that only the nature of the preparation method caused significant variations in the structure and thermal behaviour of the microspheres.  相似文献   

13.
Atom-transfer radical polymerization (ATRP) of acrylates from the initiator-modified zinc phthalocyanine yielded amphiphilic, phthalocyanine-terminated polymers with a narrow molecular-weight distribution. The disklike phthalocyanine moiety was incorporated into one end of the polymer chain. We investigated the aggregation behavior of phthalocyanine-terminated polymers in solution and in the solid state by using UV-visible, FT-IR, differential scanning calorimetry (DSC), and temperature-controlled powder X-ray diffraction (XRD) measurements. Amphiphilic phthalocaynine-terminated polymers that possess a poly[tri(ethylene glycol)methyl ether acrylate] chain aggregate in methanol to form a physical gel. Images from atomic force microscopy (AFM) and transmission electron microscopy (TEM) indicate that the physical gel contains a dense fibrous network structure, in which the zinc phthalocyanine groups were stacked into one-dimensional columnar aggregates through intermolecular pi-pi interactions between the pi-conjugated phthalocyanines and through van der Waals interaction of alkyl chains.  相似文献   

14.
PLA is one of the most frequently used biodegradable polymers. In this work, PLA was synthesized by direct condensation polymerization of lactic acid in the presence of microperlite to obtain enhanced thermal stability of PLA polymer. Molecular weights of the synthesized polymers were determined by GPC. Chemical structure analyses was done by FTIR. The degree of crystallinity was evaluated by DSC and XRD. Thermal stability of polymers was investigated by DSC and TGA. It has been observed that the existence of perlite has significantly increased the crystallinity and degradation temperature, therefore, enhanced the thermal stability of the PLA.  相似文献   

15.
Graphene oxide (GO) nanoparticles were synthesized by modified Hummers method. The synthesized GO nanoparticles were incorporated in polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend polymers for the preparation of nanocomposite polymer films by solution cast technique. Different characterizations such as XRD, UV–Vis and FTIR were carried-out on to the prepared nanocomposite polymer films. The thermal analysis of the films was studied by DSC. The morphology of PVA/PVP:GO polymer films confirms GO was exfoliated within the PVA/PVP matrix and also reveals the heterogeneous phase of nanocomposite polymer electrolyte systems. From the conductivity studies the highest conductivity of PVA/PVP: GO (0.45: 0.3) was found to be 8.05 × 10–4 S/cm at room temperature. Solid state battery has been fabricated with the configuration of Mg+/(PVA/PVP:GO)/(I2 + C + electrolyte) and its cell parameters were calculated for a constant load of 100 kΩ.  相似文献   

16.
Drug release is to a large extent influenced by penetration of a dissolution liquid into a polymer matrix. If an aqueous medium does not wet a matrix, its penetration into the polymer bulk and the resulting drug extraction would be considerably hindered. It is therefore of extreme importance to study not only the physical state of drug loaded matrices but also their wettability and their penetration by an aqueous medium.

In the present review paper we describe the results of two investigations, performed in our laboratory and having direct relevance to the medical and pharmaceutical fields: the estimation of wettabilities of polymer tablet formulations and of drug loaded polymer films. For tablet formulations it was clearly demonstrated that the use of high-viscosity polyols for contact angle and penetration experiments yielded incorruptible data which enabled to determine mean pore size of tablets from the Washburn equation. For drug-loaded cast films, as exemplified for SIBA (a cytostatic drug)-loaded ethylcellulose cast films, the choice of the solvent appeared to play a determinant role on the wettability and heterogeneity of films.  相似文献   

17.
A thermal analysis of the effect of hydration of non-aqueous polymer-stabilised gels was investigated using differential scanning calorimetry (DSC). The interaction of water with the polymer and its distribution within the gel are critical to the physicochemical behaviour of the gel, and consequently affects the utility of the gel matrix as a drug delivery vehicle. Addition of water at levels up to and including 50% (w/w) did not result in an observable freezing event in the thermogram. However, at 60 and 80% (w/w) water, phase transitions were observed, the magnitude of which were found to be independent of the annealing time within the range used. The observed melting enthalpies increased as the water concentration increased for all formulations, but were always smaller than that of pure water. There was no evidence of multiple transitions that might be attributed to different populations of water molecules. However, the results demonstrate that DSC can be employed to differentiate between freezable and non-freezable water, in these particular formulations.  相似文献   

18.
The aim was to investigate the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) (PEG-d,l-PLA) multiblock copolymer, in bulk and as microspheres, in aqueous medium. The degradation behaviour of PLA homopolymers in bulk and microspheres was evaluated as comparison.Microsphere preparation was performed by the double emulsion solvent evaporation method. Physical-chemical characterization of the raw polymers and the microspheres was performed by nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry (MDSC). Polymer molecular weight, before and after incubation in aqueous environment, was evaluated by GPC; water uptake and mass loss were determined gravimetrically.The presence of PEG segments inside PLA chains gave a characteristic spongy structure to the microspheres. A significant increase in polymer Tg values was found for the microsphere formulations compared to polymer in bulk. After 63 days of incubation in the aqueous environment, the PEG-d,l-PLA microspheres achieved an average Mw reduction of 47% compared to 20% for PLA microspheres. The corresponding Mw decrease of the polymers in bulk was significantly higher: 72% and 41% for PEG-d,l-PLA and PLA, respectively.The data show how the degradation behaviour of polymer in bulk in an aqueous environment is significantly different from the behaviour of the corresponding microspheres. These results highlight the importance of performing a thorough physical-chemical characterization on microsphere formulations.  相似文献   

19.
徐懋 《高分子科学》1999,(4):375-378
The morphological features of a side-chain liquid crystalline polymer during the mesophasetransitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogensof three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture wasobserved in the transition temperature range. Similar to main-chain liquid crystalline polymers the transitionprocess of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at localplaces of the old phase matrix and a growth process of the new phase domains.  相似文献   

20.
A comparative study between the release of Ibuprofen (IBU) from Eudragit RS100® (RS) and RL100® (RL) nanosuspensions as well as the free drug to a biological model membrane, consisting of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV), was carried out by DSC technique. The aim was to assess the suitability of such calorimetric technique to determine the kinetics of drug release from a polymer system, compared with a classical release test by dialysis method. Nanosuspensions were prepared by a modification of the quasi-emulsion solvent diffusion technique (QESD), a particular approach to the general solvent-change method. This kind of system was planned for the ophthalmic release of non-steroidal anti-inflammatory drugs in ocular diseases associated with inflammatory processes (i.e. post-cataract surgery or uveitis). The drug release was monitored by differential scanning calorimetry (DSC), following the effects exerted by IBU on the thermotropic behaviour of DMPC multilamellar vesicles. IBU affects the main transition temperature (Tm) of phospholipid vesicles, causing a shift towards lower values, driven by the drug fraction entering the lipid bilayer. The obtained values have been used as a calibration curve. DSC was performed on suspensions of blank liposomes added to fixed amounts of unloaded and IBU-loaded Eudragit RS100® and RL100® nanosuspensions as well as to powdered free drug. The Tm shifts caused by the drug released from the polymer system or by the free drug, during incubation cycles at 37 °C, were compared to the calibration curve in order to obtain the fraction of drug released. The results were also compared with in vitro dialysis release experiments. The suitability of the two different techniques to follow the drug release as well as the differences between the RL and RS polymer systems was compared, confirming the efficacy of DSC for studying the release from polymer nanoparticulate systems. Explanation of the different rate of kinetic release could be due to void liposomes, which represent a better up-taking system than the aqueous solution phase in the dialysis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号